Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Neurosci ; 43(26): 4941-4954, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37253603

RESUMO

Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aß and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aß42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.


Assuntos
Doença de Alzheimer , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Lab Invest ; 101(12): 1605-1617, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462532

RESUMO

Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aß release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aß42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aß. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aß within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Agregação Patológica de Proteínas
3.
Acta Neuropathol ; 142(3): 495-511, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991233

RESUMO

The diagnosis of Parkinson's disease (PD) and atypical parkinsonian syndromes is difficult due to the lack of reliable, easily accessible biomarkers. Multiple system atrophy (MSA) is a synucleinopathy whose symptoms often overlap with PD. Exosomes isolated from blood by immunoprecipitation using CNS markers provide a window into the brain's biochemistry and may assist in distinguishing between PD and MSA. Thus, we asked whether α-synuclein (α-syn) in such exosomes could distinguish among healthy individuals, patients with PD, and patients with MSA. We isolated exosomes from the serum or plasma of these three groups by immunoprecipitation using neuronal and oligodendroglial markers in two independent cohorts and measured α-syn in these exosomes using an electrochemiluminescence ELISA. In both cohorts, α-syn concentrations were significantly lower in the control group and significantly higher in the MSA group compared to the PD group. The ratio between α-syn concentrations in putative oligodendroglial exosomes compared to putative neuronal exosomes was a particularly sensitive biomarker for distinguishing between PD and MSA. Combining this ratio with the α-syn concentration itself and the total exosome concentration, a multinomial logistic model trained on the discovery cohort separated PD from MSA with an AUC = 0.902, corresponding to 89.8% sensitivity and 86.0% specificity when applied to the independent validation cohort. The data demonstrate that a minimally invasive blood test measuring α-syn in blood exosomes immunoprecipitated using CNS markers can distinguish between patients with PD and patients with MSA with high sensitivity and specificity. Future optimization and validation of the data by other groups would allow this strategy to become a viable diagnostic test for synucleinopathies.


Assuntos
Exossomos/imunologia , Atrofia de Múltiplos Sistemas/diagnóstico , Neurônios/metabolismo , Oligodendroglia/metabolismo , Doença de Parkinson/diagnóstico , alfa-Sinucleína/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Biomarcadores , Estudos de Coortes , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Doença de Parkinson/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Am J Pathol ; 189(8): 1621-1636, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108099

RESUMO

Apolipoprotein E (apoE) colocalizes with amyloid-ß (Aß) in Alzheimer disease (AD) plaques and in synapses, and evidence suggests that direct interactions between apoE and Aß are important for apoE's effects in AD. The present work examines the hypothesis that apoE receptors mediate uptake of apoE/Aß complex into synaptic terminals. Western blot analysis shows multiple SDS-stable assemblies in synaptosomes from human AD cortex; apoE/Aß complex was markedly increased in AD compared with aged control samples. Complex formation between apoE and Aß was confirmed by coimmunoprecipitation experiments. The apoE receptors low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) were quantified in synaptosomes using flow cytometry, revealing up-regulation of LRP1 in early- and late-stage AD. Dual-labeling flow cytometry analysis of LRP1- and LDLR positives indicate most (approximately 65%) of LDLR and LRP1 is associated with postsynaptic density-95 (PSD-95)-positive synaptosomes, indicating that remaining LRP1 and LDLR receptors are exclusively presynaptic. Flow cytometry analysis of Nile red labeling revealed a reduction in cholesterol esters in AD synaptosomes. Dual-labeling experiments showed apoE and Aß concentration into LDLR and LRP1-positive synaptosomes, along with free and esterified cholesterol. Synaptic Aß was increased by apoE4 in control and AD samples. These results are consistent with uptake of apoE/Aß complex and associated lipids into synaptic terminals, with subsequent Aß clearance in control synapses and accumulation in AD synapses.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Córtex Cerebral/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/metabolismo , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sinapses/patologia , Sinaptossomos/metabolismo , Sinaptossomos/patologia
5.
Alzheimer Dis Assoc Disord ; 33(4): 327-330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513029

RESUMO

OBJECTIVE: A rare variant in TREM2 (p.R47H, rs75932628) has been consistently reported to increase the risk for Alzheimer disease (AD), while mixed evidence has been reported for association of the variant with other neurodegenerative diseases. Here, we investigated the frequency of the R47H variant in a diverse and well-characterized multicenter neurodegenerative disease cohort. METHODS: We examined the frequency of the R47H variant in a diverse neurodegenerative disease cohort, including a total of 3058 patients clinically diagnosed with AD, frontotemporal dementia spectrum syndromes, mild cognitive impairment, progressive supranuclear palsy syndrome, corticobasal syndrome, or amyotrophic lateral sclerosis and 5089 control subjects. RESULTS: We observed a significant association between the R47H variant and AD, while no association was observed with any other neurodegenerative disease included in this study. CONCLUSIONS: Our results support the consensus that the R47H variant is significantly associated with AD. However, we did not find evidence for association of the R47H variant with other neurodegenerative diseases.


Assuntos
Predisposição Genética para Doença , Variação Genética , Genótipo , Glicoproteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Disfunção Cognitiva/genética , Estudos de Coortes , Feminino , Demência Frontotemporal/genética , Humanos , Internacionalidade , Masculino
6.
J Neurosci ; 37(5): 1197-1212, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986924

RESUMO

Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT: Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.


Assuntos
Doença de Alzheimer/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Estimulação Elétrica , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/farmacologia , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
7.
Neurobiol Dis ; 114: 120-128, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501530

RESUMO

Synaptic neurodegeneration is thought to be an early event initiated by soluble ß-amyloid (Aß) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aß aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aß oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/-) relative to E4FAD- (non-carrier; APOE4+/+/FAD-/-) mice, suggesting NP1 is modulated by Aß expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD.


Assuntos
Doença de Alzheimer/sangue , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/sangue , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Biomarcadores/sangue , Encéfalo/patologia , Proteína C-Reativa , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Sinapses/patologia
8.
Biochem Biophys Res Commun ; 499(4): 751-757, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29604274

RESUMO

Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site.


Assuntos
Inibidores Enzimáticos/farmacologia , Naftalenos/farmacologia , Pirimidinonas/farmacologia , Esfingomielina Fosfodiesterase/química , Proteínas tau/metabolismo , Animais , Técnicas Biossensoriais , Encéfalo/metabolismo , Sistema Livre de Células , Inibidores Enzimáticos/química , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Naftalenos/química , Permeabilidade , Domínios Proteicos , Pirimidinonas/química , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Extratos de Tecidos , Proteínas tau/antagonistas & inibidores
9.
Am J Pathol ; 186(1): 185-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26718979

RESUMO

Amyloid-ß (Aß) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aß and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aß and p-tau in large populations of individual synaptic terminals. Soluble Aß oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aß was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aß oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aß-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aß drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Sinapses/patologia , Proteínas tau/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Microscopia Confocal , Fosforilação , Ratos , Ratos Transgênicos
11.
Brain ; 138(Pt 7): 2005-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981964

RESUMO

Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-ß-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-ß and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-ß reduces neuron-specific endophilin-B1, which in turn enhances amyloid-ß accumulation and neuronal vulnerability to stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinaptossomos/metabolismo , Sinaptossomos/patologia
12.
J Neurochem ; 133(3): 368-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25393609

RESUMO

The microtubule-associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal-specific antibodies show that in many synaptosome samples tau lacks a C-terminus. Flow cytometry experiments to quantify the extent of C-terminal truncation reveal that only 15-25% of synaptosomes are positive for intact C-terminal tau. Potassium-induced depolarization demonstrates release of tau and tau fragments from pre-synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well-positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre-synaptic compartment in AD. Results demonstrate the abundance of tau, mainly C-terminal truncated tau, in synaptic terminals in aged control and in Alzheimer's disease (AD) samples. Tau fragments and dimers/oligomers are prominent in AD synapses. Following depolarization, tau release is potentiated in AD nerve terminals compared to aged controls. We hypothesize (i) endosomal release of the different tau peptides from AD synapses, and (ii) together with phosphorylation, fragmentation of synaptic tau exacerbates tau aggregation, synaptic dysfunction, and the spread of tau pathology in AD. Aß = amyloid-beta.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Dement Geriatr Cogn Disord ; 39(3-4): 154-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25547651

RESUMO

Apolipoprotein E (APOE) genotype is the strongest known genetic risk factor for sporadic Alzheimer's disease (AD), but the utility of plasma ApoE levels for assessing the severity of underlying neurodegenerative changes remains uncertain. Here, we examined cross-sectional associations between plasma ApoE levels and volumetric magnetic resonance imaging indices of the hippocampus from 541 participants [57 with normal cognition (NC), 375 with mild cognitive impairment (MCI), and 109 with mild AD] who were enrolled in the Alzheimer's Disease Neuroimaging Initiative. Across the NC and MCI groups, lower plasma ApoE levels were significantly correlated with smaller hippocampal size, as measured by either hippocampal volume or hippocampal radial distance. These associations were driven primarily by findings from carriers of an APOE ε4 allele and are consistent with prior reports that lower plasma ApoE levels correlate with greater global cortical Pittsburgh Compound B retention. In this high-risk group, plasma ApoE levels may represent a peripheral marker of underlying AD neuropathology in nondemented elderly individuals.


Assuntos
Doença de Alzheimer/sangue , Apolipoproteína E4/sangue , Disfunção Cognitiva/genética , Hipocampo/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Biomarcadores/sangue , Estudos Transversais , Feminino , Genótipo , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Testes Neuropsicológicos , Tamanho do Órgão
14.
J Biol Chem ; 288(8): 5914-26, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23293020

RESUMO

Human apolipoprotein E (apoE) isoforms may differentially modulate amyloid-ß (Aß) levels. Evidence suggests physical interactions between apoE and Aß are partially responsible for these functional effects. However, the apoE/Aß complex is not a single static structure; rather, it is defined by detection methods. Thus, literature results are inconsistent and difficult to interpret. An ELISA was developed to measure soluble apoE/Aß in a single, quantitative method and was used to address the hypothesis that reduced levels of soluble apoE/Aß and an increase in soluble Aß, specifically oligomeric Aß (oAß), are associated with APOE4 and AD. Previously, soluble Aß42 and oAß levels were greater with APOE4 compared with APOE2/APOE3 in hippocampal homogenates from EFAD transgenic mice (expressing five familial AD mutations and human apoE isoforms). In this study, soluble apoE/Aß levels were lower in E4FAD mice compared with E2FAD and E3FAD mice, thus providing evidence that apoE/Aß levels isoform-specifically modulate soluble oAß clearance. Similar results were observed in soluble preparations of human cortical synaptosomes; apoE/Aß levels were lower in AD patients compared with controls and lower with APOE4 in the AD cohort. In human CSF, apoE/Aß levels were also lower in AD patients and with APOE4 in the AD cohort. Importantly, although total Aß42 levels decreased in AD patients compared with controls, oAß levels increased and were greater with APOE4 in the AD cohort. Overall, apoE isoform-specific formation of soluble apoE/Aß modulates oAß levels, suggesting a basis for APOE4-induced AD risk and a mechanistic approach to AD biomarkers.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Animais , Apolipoproteína E4/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Estudos de Coortes , Cruzamentos Genéticos , Ensaio de Imunoadsorção Enzimática/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Isoformas de Proteínas , Sinaptossomos/metabolismo
15.
J Neurosci Methods ; 406: 110137, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626853

RESUMO

BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.


Assuntos
Doença de Alzheimer , Separação Celular , Córtex Cerebral , Vesículas Extracelulares , Doença de Alzheimer/patologia , Vesículas Extracelulares/patologia , Separação Celular/métodos , Córtex Cerebral/patologia , Humanos , Criopreservação , Autopsia , RNA-Seq , Neuroglia/patologia , Neurônios/patologia
16.
Stroke ; 44(11): 3246-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23982714

RESUMO

BACKGROUND AND PURPOSE: No approved acute therapy exists for thousands of patients with ischemic stroke who present ineligible for thrombolytics. The purpose of this proof-of-concept study was to evaluate the efficacy of acute antiplatelet loading on stroke outcome in the rabbit small clot embolic model. METHODS: Sixty male New Zealand white rabbits were embolized via small clots into the middle cerebral artery. Two hours later, animals were treated with (1) aspirin (5 mg/kg; n=20); (2) usual dual antiplatelet loading (aspirin 10 mg/kg+clopidogrel 10 mg/kg; n=20); or (3) high-dose dual antiplatelet loading (aspirin 10 mg/kg+clopidogrel 30 mg/kg; n=20). The coprimary outcomes were as follows: (1) platelet inhibition and (2) behavioral outcome as measured by the P50 (milligrams of clot that leads to neurological dysfunction in 50% of animals in a group). RESULTS: There was a significant difference in 3-hour arachidonic acid and ADP (P<0.011); 6-hour collagen and ADP (P<0.01, P<0.01); and 24-hour collagen, arachidonic acid, and ADP (P=0.02, P<0.01, P<0.01) platelet inhibition. The behavioral outcome was significantly better in the usual dual antiplatelet loading versus aspirin group (P=0.02). CONCLUSIONS: This study suggests that usual dual antiplatelet loading is clinically beneficial in a validated model of acute stroke. Study of usual dual antiplatelet loading in acute stroke is warranted to provide treatment to stroke victims ineligible for current therapies.


Assuntos
Plaquetas/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Difosfato de Adenosina/sangue , Animais , Ácido Araquidônico/sangue , Aspirina/farmacologia , Colágeno/sangue , Modelos Animais de Doenças , Embolização Terapêutica , Fibrinolíticos/farmacologia , Masculino , Coelhos , Distribuição Aleatória , Resultado do Tratamento
17.
Neurobiol Dis ; 45(1): 381-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914482

RESUMO

Amyloid-beta (Aß) is thought to play a central role in synaptic dysfunction (e.g. neurotransmitter release) and synapse loss. Glutamatergic dysfunction is involved in the pathology of Alzheimer's disease (AD) and perhaps plays a central role in age-related cognitive impairment. Yet, it is largely unknown whether Aß accumulates in excitatory boutons. To assess the possibility that glutamatergic terminals are lost in AD patients, control and AD synaptosomes were immunolabeled for the most abundant vesicular glutamate transporters (VGluT1 and VGluT2) and quantified by flow cytometry and immunoblot methods. In post-mortem parietal cortex from aged control subjects, glutamatergic boutons are fairly abundant as approximately 40% were immunoreactive for VGluT1 (37%) and VGluT2 (39%). However, the levels of these specific markers of glutamatergic synapses were not significantly different among control and AD cases. To test the hypothesis that Aß is associated with excitatory terminals, AD synaptosomes were double-labeled for Aß and for VGluT1 and VGluT2, and analyzed by flow cytometry and confocal microscopy. Our study demonstrated that Aß immunoreactivity (IR) was present in glutamatergic terminals of AD patients. Quantification of Aß and VGluT1 in a large population of glutamatergic nerve terminals was performed by flow cytometry, showing that 42% of VGluT1 synaptosomes were immunoreactive for Aß compared to 9% of VGluT1 synaptosomes lacking Aß-IR. Percentage of VGluT2 synaptosomes immunoreactive for Aß (21%) was significantly higher than VGluT2 synaptosomes lacking Aß-IR (9%). Moreover, Aß preferentially affects VGluT1 (42% positive) compared to VGluT2 terminals (21%). These data represent the first evidence of high levels of Aß in excitatory boutons in AD cortex and support the hypothesis that Aß may play a role in modulating glutamate transmission in AD terminals.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Sinaptossomos/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
Cytometry A ; 81(3): 248-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213704

RESUMO

Amyloid beta (Aß) oligomers and phosphorylated tau (p-tau) aggregates are increasingly identified as potential toxic intermediates in Alzheimer's disease (AD). In cortical AD synapses, p-tau co-localizes with Aß, but the Aß and p-tau peptide species responsible for synaptic dysfunction and demise remains unclear. The present experiments were designed to use high-speed cell sorting techniques to purify synaptosome population based on size, and then extend the method to physically isolate Aß-positive synaptosomes with the goal of understanding the nature of Aß and tau pathology in AD synapses. To examine the purity of size-gated synaptosomes, samples were first gated on size; particles with sizes between 0.5 and 1.5 microns were collected. Electron microscopy documented a homogenous population of spherical particles with internal vesicles and synaptic densities. Next, size-gated synaptosomes positive for Aß were collected by fluorescence activated sorting and then analyzed by immunoblotting techniques. Sorted Aß-positive synaptosomes were enriched for amyloid precursor protein (APP) and for Aß oligomers and aggregates; immunolabeling for p-tau showed a striking accumulation of p-tau aggregates compared to the original homogenate and purified synaptosomes. These results confirm co-localization of Aß and p-tau within individual synaptic terminals and provide proof of concept for the utility of flow sorting synaptosomes.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Córtex Cerebral/patologia , Terminações Pré-Sinápticas/patologia , Sinaptossomos/patologia , Proteínas tau/análise , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Animais , Córtex Cerebral/química , Feminino , Citometria de Fluxo/métodos , Humanos , Masculino , Camundongos , Microscopia Eletrônica/métodos , Sinaptossomos/fisiologia , Proteínas tau/química
19.
Acta Neuropathol ; 123(1): 39-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020632

RESUMO

The apolipoprotein E4 allele (APOE4) contributes to Alzheimer's disease (AD) risk and APOE2 is protective, but the relevant cellular mechanisms are unknown. We have used flow cytometry analysis to measure apolipoprotein E (apoE) and amyloid beta peptide (Aß) levels in large populations of synaptic terminals from AD and aged cognitively normal controls, and demonstrate that modest but significant increases in soluble apoE levels accompany elevated Aß in AD cortical synapses and in an APP/PS1 rat model of AD. Dual labeling experiments document co-localization of apoE and Aß in individual synapses with concentration of Aß in a small population of apoE-positive synapses in both AD and controls. Consistent with a clearance role, the apoE level was higher in Aß-positive synapses in control cases. In aged targeted replacement mice expressing human apoE, apoE2/4 synaptic terminals demonstrated the highest level of apoE and the lowest level of Aß compared to apoE3/3 and apoE4/4 lines. In apoE2/4 terminals, the pattern of immunolabeling for apoE and Aß closely resembled the pattern in human control cases, and elevated apoE was accompanied by elevated free cholesterol in apoE2/4 synaptic terminals. These results are consistent with a role for APOE in Aß clearance in AD synapses, and suggest that optimal lipidation of apoE2 compared to E3 and E4 makes an important contribution to Aß clearance and synaptic function.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Colesterol/metabolismo , Terminações Pré-Sinápticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Transgênicos
20.
Dement Geriatr Cogn Disord ; 33(1): 1-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22343824

RESUMO

BACKGROUND/AIMS: Biological markers of utility in tracking Alzheimer's disease (AD) during the presymptomatic prodromal phase are important for prevention studies. Changes in cerebrospinal fluid (CSF) levels of 42-amino-acid ß-amyloid (Aß(42)), total tau protein (t-tau) and phosphorylated tau at residue 181 (p-tau(181)) during this state are incompletely characterized. METHODS: We measured CSF markers in 13 carriers of familial AD (FAD) mutations that are fully penetrant for causing AD (PSEN1 and APP) and in 5 non-mutation-carrying family members. RESULTS: Even among the entirely presymptomatic mutation carriers (n = 9), Aß(42) was diminished (388.7 vs. 618.4 pg/ml, p = 0.004), and t-tau (138.5 vs. 50.5 pg/ml, p = 0.002) and p-tau(181) (71.7 vs. 24.6 pg/ml, p = 0.003) were elevated. There was a negative correlation between Aß(42) levels and age relative to the family-specific age of dementia diagnosis. CONCLUSIONS: Our data are consistent with a decline in CSF Aß(42) levels occurring at least 20 years prior to clinical dementia in FAD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Fatores Etários , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/genética , Biomarcadores , Estudos de Coortes , DNA/genética , Diagnóstico Precoce , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Presenilina-1/genética , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa