Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Immunol ; 371: 104451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781155

RESUMO

The COVID-19 pandemic has once again brought to the forefront the existence of a tight link between the coagulation/fibrinolytic system and the immunologic processes. Tissue-type plasminogen activator (tPA) is a serine protease with a key role in fibrinolysis by converting plasminogen into plasmin that can finally degrade fibrin clots. tPA is released in the blood by endothelial cells and hepatocytes but is also produced by various types of immune cells including T cells and monocytes. Beyond its role on hemostasis, tPA is also a potent modulator of inflammation and is involved in the regulation of several inflammatory diseases. Here, after a brief description of tPA structure, we review its new functions in adaptive immunity focusing on T cells and antigen presenting cells. We intend to synthesize the recent knowledge on proteolysis- and receptor-mediated effects of tPA on immune response in physiological and pathological context.


Assuntos
Coagulação Sanguínea/imunologia , COVID-19/imunologia , Fibrinólise/imunologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Ativador de Plasminogênio Tecidual/imunologia , Células Apresentadoras de Antígenos/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Modelos Imunológicos , Pandemias , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Ativador de Plasminogênio Tecidual/metabolismo
2.
J Neuroinflammation ; 18(1): 52, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610187

RESUMO

BACKGROUND: Tissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood-brain barrier permeability. Nevertheless, its role in the control of adaptive and innate immune response remains poorly understood. METHODS: tPA effects on myeloid and lymphoid cell response were studied in vivo in the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis and in vitro in splenocytes. RESULTS: tPA-/- animals exhibited less severe experimental autoimmune encephalomyelitis than their wild-type counterparts. This was accompanied by a reduction in both lymphoid and myeloid cell populations in the spinal cord parenchyma. In parallel, tPA increased T cell activation and proliferation, as well as cytokine production by a protease-dependent mechanism and via plasmin generation. In addition, tPA directly raised the expression of MHC-II and the co-stimulatory molecules CD80 and CD86 at the surface of dendritic cells and macrophages by a direct action dependent of the activation of epidermal growth factor receptor. CONCLUSIONS: Our study provides new insights into the mechanisms responsible for the harmful functions of tPA in multiple sclerosis and its animal models: tPA promotes the proliferation and activation of both lymphoid and myeloid populations by distinct, though complementary, mechanisms.


Assuntos
Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/induzido quimicamente , Ativação Linfocitária/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/toxicidade , Animais , Feminino , Humanos , Ativação Linfocitária/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Ativador de Plasminogênio Tecidual/deficiência
3.
Brain ; 143(10): 2957-2972, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893288

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.


Assuntos
Autoanticorpos/sangue , Linfócitos B/metabolismo , Encefalite/sangue , Doença de Hashimoto/sangue , Proteínas do Tecido Nervoso/toxicidade , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Encefalite/induzido quimicamente , Encefalite/imunologia , Doença de Hashimoto/induzido quimicamente , Doença de Hashimoto/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Receptores de N-Metil-D-Aspartato/imunologia
4.
J Inflamm (Lond) ; 21(1): 4, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355547

RESUMO

Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.

5.
Nat Commun ; 14(1): 5837, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730744

RESUMO

Meninges cover the surface of the brain and spinal cord and contribute to protection and immune surveillance of the central nervous system (CNS). How the meningeal layers establish CNS compartments with different accessibility to immune cells and immune mediators is, however, not well understood. Here, using 2-photon imaging in female transgenic reporter mice, we describe VE-cadherin at intercellular junctions of arachnoid and pia mater cells that form the leptomeninges and border the subarachnoid space (SAS) filled with cerebrospinal fluid (CSF). VE-cadherin expression also marked a layer of Prox1+ cells located within the arachnoid beneath and separate from E-cadherin+ arachnoid barrier cells. In vivo imaging of the spinal cord and brain in female VE-cadherin-GFP reporter mice allowed for direct observation of accessibility of CSF derived tracers and T cells into the SAS bordered by the arachnoid and pia mater during health and neuroinflammation, and detection of volume changes of the SAS during CNS pathology. Together, the findings identified VE-cadherin as an informative landmark for in vivo imaging of the leptomeninges that can be used to visualize the borders of the SAS and thus potential barrier properties of the leptomeninges in controlling access of immune mediators and immune cells into the CNS during health and neuroinflammation.


Assuntos
Doenças Neuroinflamatórias , Pia-Máter , Feminino , Animais , Camundongos , Sistema Nervoso Central/diagnóstico por imagem , Aracnoide-Máter/diagnóstico por imagem , Caderinas , Inflamação , Camundongos Transgênicos
6.
Transl Stroke Res ; 11(3): 481-495, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31522409

RESUMO

The poor clinical relevance of experimental models of stroke contributes to the translational failure between preclinical and clinical studies testing anti-inflammatory molecules for ischemic stroke. Here, we (i) describe the time course of inflammatory responses triggered by a thromboembolic model of ischemic stroke and (ii) we examine the efficacy of two clinically tested anti-inflammatory drugs: Minocycline or anti-CD49d antibodies (tested in stroke patients as Natalizumab) administered early (1 h) or late (48 h) after stroke onset. Radiological (lesion volume) and neurological (grip test) outcomes were evaluated at 24 h and 5 days after stroke. Immune cell responses peaked 48 h after stroke onset. Myeloid cells (microglia/macrophages, dendritic cells, and neutrophils) were already increased 24 h after stroke onset, peaked at 48 h, and remained increased-although to a lesser extent-5 days after stroke onset. CD8+ and CD4+ T-lymphocytes infiltrated the ipsilateral hemisphere later on (only from 48 h). These responses occurred together with a progressive blood-brain barrier leakage at the lesion site, starting 24 h after stroke onset. Lesion volume was maximal 24-48 h after stroke onset. Minocycline reduced both lesion volume and neurological deficit only when administered early after stroke onset. The blockade of leukocyte infiltration by anti-CD49d had no impact on lesion volume or long-term neurological deficit, independently of the timing of treatment. Our data are in accordance with the results of previous clinical reports on the use of Minocycline and Natalizumab on ischemic stroke. We thus propose the use of this clinically relevant model of thromboembolic stroke with recanalization for future testing of anti-inflammatory strategies for stroke.


Assuntos
Anti-Inflamatórios/administração & dosagem , Isquemia Encefálica/imunologia , AVC Isquêmico/imunologia , Minociclina/administração & dosagem , Natalizumab/administração & dosagem , Traumatismo por Reperfusão/imunologia , Tromboembolia/imunologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , AVC Isquêmico/etiologia , Masculino , Camundongos , Traumatismo por Reperfusão/etiologia , Tromboembolia/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa