Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626664

RESUMO

Examining in situ processes in the soil rhizosphere requires spatial information on physical and chemical properties under undisturbed conditions. We developed a correlative imaging workflow for targeted sampling of roots in their three-dimensional (3D) context and assessed the imprint of roots on chemical properties of the root-soil contact zone at micrometer to millimeter scale. Maize (Zea mays) was grown in 15N-labeled soil columns and pulse-labeled with 13CO2 to visualize the spatial distribution of carbon inputs and nitrogen uptake together with the redistribution of other elements. Soil columns were scanned by X-ray computed tomography (X-ray CT) at low resolution (45 µm) to enable image-guided subsampling of specific root segments. Resin-embedded subsamples were then analyzed by X-ray CT at high resolution (10 µm) for their 3D structure and chemical gradients around roots using micro-X-ray fluorescence spectroscopy (µXRF), nanoscale secondary ion mass spectrometry (NanoSIMS), and laser-ablation isotope ratio mass spectrometry (LA-IRMS). Concentration gradients, particularly of calcium and sulfur, with different spatial extents could be identified by µXRF. NanoSIMS and LA-IRMS detected the release of 13C into soil up to a distance of 100 µm from the root surface, whereas 15N accumulated preferentially in the root cells. We conclude that combining targeted sampling of the soil-root system and correlative microscopy opens new avenues for unraveling rhizosphere processes in situ.

2.
Environ Sci Technol ; 55(13): 9384-9393, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165287

RESUMO

The development of high-resolution microscopy and spectroscopy techniques has allowed the analysis of microscopic 3D objects in fields like nanotechnology and life and soil sciences. Soils have the ability to incorporate and store large amounts of organic carbon. To study this organic matter (OM) sequestration, it is essential to analyze its association with soil minerals at the relevant microaggregate scale. This has been previously studied in 2D. However, 3D surface representations would allow a variable angle and magnification analysis, providing detailed insight on their architecture. Here we illustrate a 4D surface reconstruction workflow able to locate preferential sites for OM deposition with respect to microaggregate topography. We used Helium Ion Microscopy to acquire overlapping Secondary Electron (SE) images to reconstruct the soil topography in 3D. Then we used nanoscale Secondary Ion Mass Spectrometry imaging to chemically differentiate between the OM and mineral constituents forming the microaggregates. This image was projected onto the 3D SE model to create a 4D surface reconstruction. Our results show that organo-mineral associations mainly form at medium curvatures while flat and highly curved surfaces are avoided. This method presents an important step forward to survey the 3D physical structure and chemical composition of microscale biogeochemical systems correlatively.


Assuntos
Minerais , Solo , Carbono , Análise Espectral
3.
Environ Sci Technol ; 55(14): 9876-9884, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34247483

RESUMO

Neutrophilic microbial pyrite (FeS2) oxidation coupled to denitrification is thought to be an important natural nitrate attenuation pathway in nitrate-contaminated aquifers. However, the poor solubility of pyrite raises questions about its bioavailability and the mechanisms underlying its oxidation. Here, we investigated direct microbial pyrite oxidation by a neutrophilic chemolithoautotrophic nitrate-reducing Fe(II)-oxidizing culture enriched from a pyrite-rich aquifer. We used pyrite with natural abundance (NA) of Fe isotopes (NAFe-pyrite) and 57Fe-labeled siderite to evaluate whether the oxidation of the more soluble Fe(II)-carbonate (FeCO3) can indirectly drive abiotic pyrite oxidation. Our results showed that in setups where only pyrite was incubated with bacteria, direct microbial pyrite oxidation contributed ca. 26% to overall nitrate reduction. The rest was attributed to the oxidation of elemental sulfur (S0), present as a residue from pyrite synthesis. Pyrite oxidation was evidenced in the NAFe-pyrite/57Fe-siderite setups by maps of 56FeO and 32S obtained using a combination of SEM with nanoscale secondary ion MS (NanoSIMS), which showed the presence of 56Fe(III) (oxyhydr)oxides that could solely originate from 56FeS2. Based on the fit of a reaction model to the geochemical data and the Fe-isotope distributions from NanoSIMS, we conclude that anaerobic oxidation of pyrite by our neutrophilic enrichment culture was mainly driven by direct enzymatic activity of the cells. The contribution of abiotic pyrite oxidation by Fe3+ appeared to be negligible in our experimental setup.


Assuntos
Água Subterrânea , Nitratos , Anaerobiose , Compostos Férricos , Compostos Ferrosos , Ferro , Oxirredução , Sulfetos
4.
Glob Chang Biol ; 26(3): 1926-1935, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31774225

RESUMO

Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13 C-CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg-1  soil day-1 in the Ah horizon. The fixation rates were 2.8-8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%-3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram-positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram-positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.


Assuntos
Dióxido de Carbono , Solo , Carbono , Florestas , Fungos , Microbiologia do Solo
5.
Environ Sci Technol ; 53(22): 13081-13087, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31658416

RESUMO

Iron (Fe) oxides in soils are strong sorbents for environmentally important compounds like soil organic matter (SOM) or phosphate, while sorption under field conditions is still poorly understood. We installed polyvinyl chloride plastic bars which have been coated either with synthetic Fe or manganese (Mn) oxides for 30 days in a redoximorphic soil. A previous study revealed the formation of newly formed ("natural") Fe oxides along the Mn oxide coatings. This enables us to differentiate between sorption occurring onto the surfaces of synthetic versus natural Fe oxides. After removal of the bars, they were analyzed by nanoscale secondary ion mass spectrometry (NanoSIMS) to study the distribution of Fe (56Fe16O-), SOM (12C14N-), and phosphorus (31P16O2-) at the microscale. Image analysis of individual Fe oxide particles revealed a close association of Fe, SOM, and P resulting in coverage values up to 71%. Furthermore, ion ratios between sorbent (56Fe16O-) and sorbate (12C14N- and 31P16O2-) were smaller along the natural oxides when compared with those for synthetic Fe oxides. We conclude that both natural and synthetic Fe oxides rapidly sequester SOM and P (i.e., within 30 days) but that newly, natural formed Fe oxides sorbe more SOM and P than synthetic Fe oxides.


Assuntos
Fosfatos , Solo , Adsorção , Ferro , Óxidos
6.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500258

RESUMO

The enrichment culture KS is one of the few existing autotrophic, nitrate-reducing, Fe(II)-oxidizing cultures that can be continuously transferred without an organic carbon source. We used a combination of catalyzed amplification reporter deposition fluorescence in situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (NanoSIMS) to analyze community dynamics, single-cell activities, and interactions among the two most abundant microbial community members (i.e., Gallionellaceae sp. and Bradyrhizobium spp.) under autotrophic and heterotrophic growth conditions. CARD-FISH cell counts showed the dominance of the Fe(II) oxidizer Gallionellaceae sp. under autotrophic conditions as well as of Bradyrhizobium spp. under heterotrophic conditions. We used NanoSIMS to monitor the fate of 13C-labeled bicarbonate and acetate as well as 15N-labeled ammonium at the single-cell level for both taxa. Under autotrophic conditions, only the Gallionellaceae sp. was actively incorporating 13C-labeled bicarbonate and 15N-labeled ammonium. Interestingly, both Bradyrhizobium spp. and Gallionellaceae sp. became enriched in [13C]acetate and [15N]ammonium under heterotrophic conditions. Our experiments demonstrated that Gallionellaceae sp. was capable of assimilating [13C]acetate while Bradyrhizobium spp. were not able to fix CO2, although a metagenomics survey of culture KS recently revealed that Gallionellaceae sp. lacks genes for acetate uptake and that the Bradyrhizobium sp. carries the genetic potential to fix CO2 The study furthermore extends our understanding of the microbial reactions that interlink the nitrogen and Fe cycles in the environment.IMPORTANCE Microbial mechanisms by which Fe(II) is oxidized with nitrate as the terminal electron acceptor are generally referred to as "nitrate-dependent Fe(II) oxidation" (NDFO). NDFO has been demonstrated in laboratory cultures (such as the one studied in this work) and in a variety of marine and freshwater sediments. Recently, the importance of NDFO for the transport of sediment-derived Fe in aquatic ecosystems has been emphasized in a series of studies discussing the impact of NDFO for sedimentary nutrient cycling and redox dynamics in marine and freshwater environments. In this article, we report results from an isotope labeling study performed with the autotrophic, nitrate-reducing, Fe(II)-oxidizing enrichment culture KS, which was first described by Straub et al. (1) about 20 years ago. Our current study builds on the recently published metagenome of culture KS (2).


Assuntos
Bradyrhizobium/metabolismo , Carbono/metabolismo , Compostos Ferrosos/metabolismo , Gallionellaceae/metabolismo , Nitratos/metabolismo , Processos Autotróficos , Hibridização in Situ Fluorescente , Oxirredução , Espectrometria de Massa de Íon Secundário
7.
Rapid Commun Mass Spectrom ; 32(11): 851-861, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524357

RESUMO

RATIONALE: In contaminated soil, copper (Cu) is commonly distributed among various very small particles. To enlighten the qualitative distribution of Cu in a contaminated Technosol (a soil developed from deposited technogenic material) on the sub-micron scale, we used nano-scale secondary ion mass spectrometry (NanoSIMS). METHODS: We studied seven areas (up to 40 µm × 40 µm) on a thin section of a soil horizon by NanoSIMS, measuring 12 C- , 18 O- , 32 S- , 63 Cu- and 56 Fe16 O- . We evaluated the NanoSIMS measurements with a novel digital image processing tool to enlighten the composition of measured areas and thus the distribution of Cu at the sub-micron scale. Image processing comprised spatial and spectral smoothing, normalization, endmember extraction and supervised classification. RESULTS: Copper was present in all areas studied on the thin section in hotspots. 63 Cu- was never the ion with the highest number of mean-normalized counts (MNCs). In classes indicating Cu accumulation, Fe or S had the highest MNCs with mostly small values for O, pointing to the presence of Cu in sulfides. Copper adsorbed on Fe oxides was also indicated. Direct interaction of Cu with organic matter was less important. Copper-containing minerals were rather adjacent to or surrounded by an organic matrix. CONCLUSIONS: The combination of NanoSIMS analyses with digital image processing gave us new insights into the distribution of Cu in contaminated soil. We suggest this combination as a new powerful tool for the identification of ionic contaminants in soil and other solid phases in the environment.

8.
Rapid Commun Mass Spectrom ; 32(8): 619-628, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29465799

RESUMO

RATIONALE: Aluminium (Al)-substituted goethite is ubiquitous in soils and sediments. The extent of Al-substitution affects the physicochemical properties of the mineral and influences its macroscale properties. Bulk analysis only provides total Al/Fe ratios without providing information with respect to the Al-substitution of single minerals. Here, we demonstrate that nanoscale secondary ion mass spectrometry (NanoSIMS) enables the precise determination of Al-content in single minerals, while simultaneously visualising the variation of the Al/Fe ratio. METHODS: Al-substituted goethite samples were synthesized with increasing Al concentrations of 0.1, 3, and 7 % and analysed by NanoSIMS in combination with established bulk spectroscopic methods (XRD, FTIR, Mössbauer spectroscopy). The high spatial resolution (50-150 nm) of NanoSIMS is accompanied by a high number of single-point measurements. We statistically evaluated the Al/Fe ratios derived from NanoSIMS, while maintaining the spatial information and reassigning it to its original localization. RESULTS: XRD analyses confirmed increasing concentration of incorporated Al within the goethite structure. Mössbauer spectroscopy revealed 11 % of the goethite samples generated at high Al concentrations consisted of hematite. The NanoSIMS data show that the Al/Fe ratios are in agreement with bulk data derived from total digestion and demonstrated small spatial variability between single-point measurements. More advantageously, statistical analysis and reassignment of single-point measurements allowed us to identify distinct spots with significantly higher or lower Al/Fe ratios. CONCLUSIONS: NanoSIMS measurements confirmed the capacity to produce images, which indicated the uniform increase in Al-concentrations in goethite. Using a combination of statistical analysis with information from complementary spectroscopic techniques (XRD, FTIR and Mössbauer spectroscopy) we were further able to reveal spots with lower Al/Fe ratios as hematite.

10.
Environ Sci Technol ; 51(21): 12182-12189, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28954517

RESUMO

The physical, chemical, and biological processes forming the backbone of important soil functions (e.g., carbon sequestration, nutrient and contaminant storage, and water transport) take place at reactive interfaces of soil particles and pores. The accessibility of these interfaces is determined by the spatial arrangement of the solid mineral and organic soil components, and the resulting pore system. Despite the development and application of novel imaging techniques operating at the micrometer and even nanometer scale, the microstructure of soils is still considered as a random arrangement of mineral and organic components. Using nanoscale secondary ion mass spectroscopy (NanoSIMS) and a novel digital image processing routine adapted from remote sensing (consisting of image preprocessing, endmember extraction, and a supervised classification), we extensively analyzed the spatial distribution of secondary ions that are characteristic of mineral and organic soil components on the submicrometer scale in an intact soil aggregate (40 measurements, each covering an area of 30 µm × 30 µm with a lateral resolution of 100 nm × 100 nm). We were surprised that the 40 spatially independent measurements clustered in just two complementary types of micrometer-sized domains. Each domain is characterized by a microarchitecture built of a definite mineral assemblage with various organic matter forms and a specific pore system, each fulfilling different functions in soil. Our results demonstrate that these microarchitectures form due to self-organization of the manifold mineral and organic soil components to distinct mineral assemblages, which are in turn stabilized by biophysical feedback mechanisms acting through pore characteristics and microbial accessibility. These microdomains are the smallest units in soil that fulfill specific functionalities.


Assuntos
Sequestro de Carbono , Solo , Minerais , Espectrometria de Massa de Íon Secundário
11.
Environ Sci Technol ; 49(16): 9874-80, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26196852

RESUMO

Microscale processes occurring at biogeochemical interfaces in soils and sediments have fundamental impacts on phenomena at larger scales. To obtain the organo-mineral associations necessary for the study of biogeochemical interfaces, bulk samples are usually fractionated into microaggregates or micrometer-sized single particles. Such fine-grained mineral particles are often prepared for nanoscale secondary ion mass spectroscopy (NanoSIMS) investigations by depositing them on a carrier. This introduces topographic differences, which can strongly affect local sputtering efficiencies. Embedding in resin causes undesired C impurities. We present a novel method for preparing polished cross-sections of micrometer-sized primary soil particles that overcomes the problems of topography and C contamination. The particles are coated with a marker layer, embedded, and well-polished. The interpretation of NanoSIMS data is assisted by energy-dispersive X-ray spectroscopy on cross-sections prepared by a focused ion beam. In the cross-sections, organic assemblages on the primary soil particles become visible. This novel method significantly improves the quality of NanoSIMS measurements on grainy mineral samples, enabling better characterization of soil biogeochemical interfaces. In addition, this sample preparation technique may also improve results from other (spectro-) microscopic techniques.


Assuntos
Métodos Analíticos de Preparação de Amostras , Microscopia/métodos , Tamanho da Partícula , Análise Espectral/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Solo/química , Espectrometria de Massa de Íon Secundário
12.
Appl Microbiol Biotechnol ; 99(2): 957-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194840

RESUMO

Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results.


Assuntos
Bactérias/metabolismo , Benzeno/química , Biomassa , Biodegradação Ambiental , Hibridização in Situ Fluorescente , Áreas Alagadas
13.
Angew Chem Int Ed Engl ; 54(19): 5784-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25783034

RESUMO

Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added (19) F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The (19) F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms.


Assuntos
Nanotecnologia , Proteínas/genética , Espectrometria de Massa de Íon Secundário , Animais , Linhagem Celular , Química Click , Cricetinae , Corantes Fluorescentes/química , Radioisótopos de Flúor , Microscopia de Fluorescência , Estrutura Molecular , Proteínas/química , Proteínas/metabolismo
14.
Environ Sci Technol ; 47(7): 3158-66, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23451805

RESUMO

Extracellular polymeric substances (EPS) are expected to be an important source for the formation of mineral-organic associations in soil. Because such formations affect the composition of mobile and immobile organic matter as well as the reactivity of minerals, we investigated the composition of EPS before and after adsorption to goethite. Raman measurements on EPS extracted from Bacillus subtilis distinguished four fractions rich in proteins, polysaccharides, lipids, or lipids and proteins. Scanning transmission X-ray microscopy identified three different EPS-fractions that varied in their composition in proteins, nonaromatic proteins, and polysaccharides. Reaction of EPS with goethite led to a preferential adsorption of lipids and proteins. The organic coverage was heterogeneous, consisting of ~100 × 200 nm large patches of either lipid-rich or protein-rich material. Nanoscale secondary ion mass spectrometry showed a strong S enrichment in aggregates of ~400 nm in the goethite adsorbed EPS. From our simplified model system, we learned that only a small portion (<10%) of EPS was immobilized via adsorption to goethite. This fraction formed a coating of subµm spaced protein-rich and lipid-rich domains, i.e., of two materials which will strongly differ in their reactive sites. This will finally affect further adsorption, the particle mobility and eventually also colloidal stability.


Assuntos
Biopolímeros/química , Espaço Extracelular/química , Compostos de Ferro/química , Microscopia/métodos , Minerais/química , Nanopartículas/química , Espectrometria de Massa de Íon Secundário/métodos , Adsorção , Isótopos de Carbono , Microespectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
15.
Nat Commun ; 14(1): 6609, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857604

RESUMO

Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.


Assuntos
Cálcio , Solo , Solo/química , Cálcio/metabolismo , Carbono/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Minerais/química
16.
Sci Rep ; 13(1): 2818, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797309

RESUMO

Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.

17.
Sci Total Environ ; 905: 167232, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734608

RESUMO

Sorption of organic molecules on mineral surfaces can occur through several binding mechanisms of varying strength. Here, we investigated the importance of inner-sphere P-O-Fe bonds in synthetic and natural mineral-organic associations. Natural organic matter such as water extracted soil organic matter (WESOM) and extracellular polymeric substances (EPS) from liquid bacterial cultures were adsorbed to goethite and examined by FTIR spectroscopy and P K-edge NEXAFS spectroscopy. Natural particles from a Bg soil horizon (Gleysol) were subjected to X-ray fluorescence (XRF) mapping, NanoSIMS imaging, and NEXAFS spectro-microscopy at the P K-edge. Inner-sphere P-O-Fe bonds were identified for both, adsorbed EPS extracts and adsorbed WESOMs. Characteristic infrared peaks for P-O-Fe stretching vibrations are present but cannot unambiguously be interpreted due to possible interferences with mono- and polysaccharides. For the Bg horizon, P was only found on Fe oxides, covering the entire surface at different concentrations, but not on clay minerals. Linear combination fitting of NEXAFS spectra indicates that this adsorbed P is mainly a mixture of orthophosphate and organic P compounds. By combining atomic force microscopy (AFM) images with STXM-generated C and Fe distribution maps, we show that the Fe oxide surfaces were fully coated with organic matter. In contrast, clay minerals revealed a much lower C signal. The C NEXAFS spectra taken on the Fe oxides had a substantial contribution of carboxylic C, aliphatic C, and O-alkyl C, which is a composition clearly different from pure adsorbed EPS or aromatic-rich lignin-derived compounds. Our data show that inner-sphere P-O-Fe bonds are important for the association of Fe oxides with soil organic matter. In the Bg horizon, carboxyl groups and orthophosphate compete with the organic P compounds for adsorption sites.

18.
Front Physiol ; 14: 1200119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781224

RESUMO

Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.

19.
Nat Commun ; 12(1): 4115, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226560

RESUMO

The largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms-the two most prominent processes contributing to the persistence of organic matter-occur directly at plant-soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.


Assuntos
Carbono/química , Material Particulado , Microbiologia do Solo , Solo/química , Biomassa , Ácidos Graxos , Fungos , Processos Heterotróficos , Minerais/química , Plantas
20.
Sci Rep ; 7(1): 3203, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600571

RESUMO

Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soil depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa