Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185013

RESUMO

Histone deacetylases (HDACs) are a class of enzymes that cleave acyl groups from lysine residues of histone and non-histone proteins. There are 18 human HDAC isoforms with different cellular targets and functions. Among them, HDAC6 was found to be overexpressed in different types of cancer. However, when used in monotherapy, HDAC6 inhibition by selective inhibitors fails to show pronounced anti-cancer effects. The HDAC6 enzyme also addresses non-histone proteins like α-tubulin and cortactin, making it important for cell migration and angiogenesis. Recently, the NLRP3 inflammasome was identified as an important regulator of inflammation and immune responses and, importantly, HDAC6 is critically involved the activation of the inflammasome. We herein report the design, synthesis and biological evaluation of a library of selective HDAC6 inhibitors. Starting from the previously published crystal structure of MAIP-032 in complex with CD2 of zHDAC6, we performed docking studies to evaluate additional possible interactions of the cap group with the L1-loop pocket. Based on the results we synthesized 13 novel HDAC6 inhibitors via the Groebke-Blackburn-Bienaymé three component reaction as the key step. Compounds 8k (HDAC1 IC50: 5.87 µM; HDAC6 IC50: 0.024 µM; selectivity factor (SF1/6): 245) and 8m (HDAC1 IC50: 3.07 µM; HDAC6 IC50: 0.026 µM; SF1/6: 118) emerged as the most potent and selective inhibitors of HDAC6 and outperformed the lead structure MAIP-032 (HDAC1 IC50: 2.20 µM; HDAC6 IC50: 0.058 µM; SF1/6: 38) both in terms of inhibitory potency and selectivity. Subsequent immunoblot analysis confirmed the high selectivity of 8k and 8m for HDAC6 in a cellular environment. While neither 8k and 8m nor the selectivity HDAC6 inhibitor tubastatin A showed antiproliferative effects in the U-87 MG glioblastoma cell line, compound 8m attenuated cell migration significantly in wound healing assays in U-87 MG cells. Moreover, in macrophages compounds 8k and 8m demonstrated significant inhibition of LPS-induced IL1B mRNA expression and TNF release. These findings suggest that our imidazo[1,2-a]pyridine-capped HDAC6 inhibitors may serve as promising candidates for the development of drugs to effectively treat NLRP3 inflammasome-driven inflammatory diseases.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias , Humanos , Desacetilase 6 de Histona , Inflamassomos , Inibidores de Histona Desacetilases/química , Anti-Inflamatórios/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Mater Sci Mater Med ; 26(9): 232, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26358319

RESUMO

Numerous biological processes (tissue formation, remodelling and healing) are strongly influenced by the cellular microenvironment. Glycosaminoglycans (GAGs) are important components of the native extracellular matrix (ECM) able to interact with biological mediator proteins. They can be chemically functionalized and thereby modified in their interaction profiles. Thus, they are promising candidates for functional biomaterials to control healing processes in particular in health-compromised patients. Biophysical studies show that the interaction profiles between mediator proteins and GAGs are strongly influenced by (i) sulphation degree, (ii) sulphation pattern, and (iii) composition and structure of the carbohydrate backbone. Hyaluronan derivatives demonstrate a higher binding strength in their interaction with biological mediators than chondroitin sulphate for a comparable sulphation degree. Furthermore sulphated GAG derivatives alter the interaction profile of mediator proteins with their cell receptors or solute native interaction partners. These results are in line with biological effects on cells relevant for wound healing processes. This is valid for solute GAGs as well as those incorporated in collagen-based artificial ECM (aECMs). Prominent effects are (i) anti-inflammatory, immunomodulatory properties towards macrophages/dendritic cells, (ii) enhanced osteogenic differentiation of human mesenchymal stromal cells, (iii) altered differentiation of fibroblasts to myofibroblasts, (iv) reduced osteoclast activity and (v) improved osseointegration of dental implants in minipigs. The findings of our consortium Transregio 67 contribute to an improved understanding of structure-function relationships of GAG derivatives in their interaction with mediator proteins and cells. This will enable the design of bioinspired, functional biomaterials to selectively control and promote bone and skin regeneration.


Assuntos
Materiais Biocompatíveis , Glicosaminoglicanos/química , Animais , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Modelos Animais , Ressonância de Plasmônio de Superfície
3.
Biochem Pharmacol ; 225: 116257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705532

RESUMO

Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.


Assuntos
Ferroptose , Inibidores de Histona Desacetilases , Peroxidação de Lipídeos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Relação Dose-Resposta a Droga
4.
Curr Genet ; 59(1-2): 63-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423527

RESUMO

The ascomycetous yeast Yarrowia lipolytica has been established as model system for studies of several research topics as well as for biotechnological processes in the last two decades. However, frequency of heterologous recombination is high in this yeast species, and so knockouts of genes are laborious to achieve. Therefore, the aim of this study was to check whether a reduction of non-homologous end-joining (NHEJ) of double strand breaks (DSB) results in a strong increase of proportion of homologous recombinants. The Ku70-Ku80 heterodimer is known as an essential protein complex of the NHEJ. We show that deletion of YlKU70 and/or YlKU80 results in an increase of the rate of transformants with homologous recombination (HR) up to 85 % in each case. However, it never reaches near 100 % of HR in any case as described for some other yeast. Furthermore, we demonstrated that growth of Δylku strains was similar to that of the wild-type strain. In addition, no differences were detected between the Δylku strains and the parent strain in respect to sensitivity to the mutagenic agent EMS as well as to the antibiotics hygromycin, bleomycin and nourseothricin. However, Δylku70 and Δylku80 strain showed a slightly higher sensitivity against UV rays. Thus, the new constructed Δylku strains are attractive recipient strains for homologous integration of DNA fragments and a valuable tool for directed knockouts of genes. Nevertheless, our data suggest the existence of another system of non-homologous recombination what may be subject of further investigation.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Recombinação Homóloga/genética , Yarrowia/genética , Antibacterianos/farmacologia , Deleção de Genes , Testes de Sensibilidade Microbiana , Mutagênicos/farmacologia , Mutação , Yarrowia/classificação , Yarrowia/efeitos dos fármacos
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36986455

RESUMO

Histone deacetylases (HDACs) play a key role in the control of transcription, cell proliferation, and migration. FDA-approved histone deacetylase inhibitors (HDACi) demonstrate clinical efficacy in the treatment of different T-cell lymphomas and multiple myeloma. However, due to unselective inhibition, they display a wide range of adverse effects. One approach to avoiding off-target effects is the use of prodrugs enabling a controlled release of the inhibitor in the target tissue. Herein, we describe the synthesis and biological evaluation of HDACi prodrugs with photo-cleavable protecting groups masking the zinc-binding group of the established HDACi DDK137 (I) and VK1 (II). Initial decaging experiments confirmed that the photocaged HDACi pc-I could be deprotected to its parent inhibitor I. In HDAC inhibition assays, pc-I displayed only low inhibitory activity against HDAC1 and HDAC6. After irradiation with light, the inhibitory activity of pc-I strongly increased. Subsequent MTT viability assays, whole-cell HDAC inhibition assays, and immunoblot analysis confirmed the inactivity of pc-I at the cellular level. Upon irradiation, pc-I demonstrated pronounced HDAC inhibitory and antiproliferative activities which were comparable to the parent inhibitor I. Additionally, only phototreated pc-I was able to induce apoptosis in Annexin V/PI and caspase-Glo 3/7 assays, making pc-I a valuable tool for the development of light-activatable HDACi.

6.
J Med Chem ; 66(19): 13821-13837, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782298

RESUMO

Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.


Assuntos
Inibidores de Histona Desacetilases , Oxidiazóis , Desacetilase 6 de Histona/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Zinco/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
7.
Chem Commun (Camb) ; 58(79): 11087-11090, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36098075

RESUMO

The targeted degradation of histone deacetylase 6 (HDAC6) by heterobifunctional degraders constitutes a promising approach to treat HDAC6-driven diseases. Previous HDAC6 selective degraders utilised a hydroxamic acid as a zinc-binding group (ZBG) which features mutagenic and genotoxic potential. Here we report the development of a new class of selective HDAC6 degraders based on a difluoromethyl-1,3,4-oxadiazole warhead as ZBG.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Oxidiazóis , Zinco/metabolismo
8.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337122

RESUMO

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.

9.
J Med Chem ; 65(22): 15457-15472, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351184

RESUMO

Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Peptoides , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Desacetilase 6 de Histona , Peptoides/farmacologia , Peptoides/química , Decitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Histona Desacetilase 1 , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/química
10.
ChemMedChem ; 17(9): e202100755, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073610

RESUMO

Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.


Assuntos
Inibidores de Histona Desacetilases , Peptoides , Histona Desacetilase 1 , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Peptoides/química
11.
J Med Chem ; 64(19): 14620-14646, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582215

RESUMO

Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.


Assuntos
Antineoplásicos/química , Histona Desacetilases/química , Leucemia/tratamento farmacológico , Leucemia/patologia , Proteínas Nucleares/antagonistas & inibidores , Pirróis/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico , Humanos , Fatores de Transcrição/antagonistas & inibidores
12.
J Med Chem ; 62(24): 11260-11279, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31762274

RESUMO

There is increasing evidence that histone deacetylase (HDAC) inhibitors can (re)sensitize cancer cells for chemotherapeutics via "epigenetic priming". In this work, we describe the synthesis of a series of class I-selective HDAC inhibitors with 2-aminoanilides as zinc-binding groups. Several of the synthesized compounds revealed potent inhibition of the class I HDAC isoforms HDAC1, HDAC2, and/or HDAC3 and promising antiproliferative effects in the human ovarian cancer cell line A2780 and the human squamous carcinoma cell line Cal27. Selected compounds were investigated in a cellular model of platinum resistance. In particular, compound 2a revealed potent chemosensitizing properties and full reversal of cisplatin resistance in Cal27CisR cells. This effect is related to a synergistic increase in caspase 3/7 activation and induction of apoptosis. Thus, this work demonstrates that pan-HDAC inhibition or dual class I/class IIb inhibition is not required for full reversal of cisplatin resistance.


Assuntos
Compostos de Anilina/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Neoplasias Ovarianas/tratamento farmacológico , Peptoides/química , Compostos de Anilina/química , Antineoplásicos/farmacologia , Benzamidas/química , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Feminino , Inibidores de Histona Desacetilases/síntese química , Humanos , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Conformação Proteica , Células Tumorais Cultivadas
13.
Oncoimmunology ; 4(6): e1008342, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26155414

RESUMO

Dendritic cells (DCs) essentially contribute to the induction and regulation of innate and adaptive immunity. Based on these important properties, DCs may profoundly influence tumor progression in patients. However, little is known about the role of distinct human DC subsets in primary tumors and their impact on clinical outcome. In the present study, we investigated the characteristics of human 6-sulfo LacNAc (slan) DCs in clear cell renal cell carcinoma (ccRCC). slanDCs have been shown to display various tumor-directed properties and to accumulate in tumor-draining lymph nodes from patients. When evaluating 263 ccRCC and 227 tumor-free tissue samples, we found increased frequencies of slanDCs in ccRCC tissues compared to tumor-free tissues. slanDCs were also detectable in the majority of 24 metastatic lymph nodes and 67 distant metastases from ccRCC patients. Remarkably, a higher density of slanDCs was significantly associated with a reduced progression-free, tumor-specific or overall survival of ccRCC patients. Tumor-infiltrating slanDCs displayed an immature phenotype expressing interleukin-10. ccRCC cells efficiently impaired slanDC-induced T-cell proliferation and programming as well as natural killer (NK) cell activation. In conclusion, these findings indicate that higher slanDC numbers in ccRCC tissues are associated with poor prognosis. The induction of a tolerogenic phenotype in slanDCs leading to an insufficient activation of innate and adaptive antitumor immunity may represent a novel immune escape mechanism of ccRCC. These observations may have implications for the design of therapeutic strategies that harness tumor-directed functional properties of DCs against ccRCC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa