Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(5): 561-572, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36795591

RESUMO

ConspectusSingle-atom catalysts (SACs) offer unique advantages such as high (noble) metal utilization through maximum possible dispersion, large metal-support contact areas, and oxidation states usually unattainable in classic nanoparticle catalysis. In addition, SACs can serve as models for determining active sites, a simultaneously desired as well as elusive target in the field of heterogeneous catalysis. Due to the complexity of heterogeneous catalysts bearing a variety of different sites on metal particles and the respective support as well as at their interface, studies of intrinsic activities and selectivities remain largely inconclusive. While SACs could close this gap, many supported SACs remain intrinsically ill-defined due to complexities arising from the variety of different adsorption sites for atomically dispersed metals, hampering the establishment of meaningful structure-activity correlations. In addition to overcoming this limitation, well-defined SACs could even be utilized to shed light on fundamental phenomena in catalysis that remain ambiguous when studies are obscured by the complexity of heterogeneous catalysts.In this Account, we describe approaches to break down the complexity of supported single-atom catalysts through the careful choice of oxide supports with specific binding motives as well as the adsorption of well-defined ligands such as ionic liquids on single metal sites. An example of molecularly defined oxide supports is polyoxometalates (POMs), which are metal oxo clusters with precisely known composition and structure. POMs exhibit a limited number of sites to anchor atomically dispersed metals such as Pt, Pd, and Rh. Polyoxometalate-supported single-atom catalysts (POM-SACs) thus represent ideal systems for the in situ spectroscopic study of single atom sites during reactions as, in principle, all sites are identical and thus equally active in catalytic reactions. We have utilized this benefit in studies of the mechanism of CO and alcohol oxidation reactions as well as the hydro(deoxy)genation of various biomass-derived compounds. More so, the redox properties of polyoxometalates can be finely tuned by changing the composition of the support while keeping the geometry of the single-atom active site largely constant. We further developed soluble analogues of heterogeneous POM-SACs, opening the door to advanced liquid-phase nuclear magnetic resonance (NMR) and UV-vis techniques but, in particular, to electrospray ionization mass spectrometry (ESI-MS) which proves powerful in determining catalytic intermediates as well as their gas-phase reactivity. Employing this technique, we were able to resolve some of the long-standing questions about hydrogen spillover, demonstrating the broad utility of studies on defined model catalysts.

2.
Angew Chem Int Ed Engl ; 62(12): e202218265, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700387

RESUMO

The water-gas shift (WGS) reaction is often conducted at elevated temperature and requires energy-intensive separation of hydrogen (H2 ) from methane (CH4 ), carbon dioxide (CO2 ), and residual carbon monoxide (CO). Designing processes to decouple CO oxidation and H2 production provides an alternative strategy to obtain high-purity H2 streams. We report an electrothermal WGS process combining thermal oxidation of CO on a silicomolybdic acid (SMA)-supported Pd single-atom catalyst (Pd1 /CsSMA) and electrocatalytic H2 evolution. The two half-reactions are coupled through phosphomolybdic acid (PMA) as a redox mediator at a moderate anodic potential of 0.6 V (versus Ag/AgCl). Under optimized conditions, our catalyst exhibited a TOF of 1.2 s-1 with turnover numbers above 40 000 mol CO 2 ${{_{{\rm CO}{_{2}}}}}$ molPd -1 achieving stable H2 production with a purity consistently exceeding 99.99 %.

3.
Angew Chem Int Ed Engl ; 61(40): e202208237, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35843894

RESUMO

Hydrogen spillover, involving the transfer of H atoms from metal sites onto the catalyst support, is ubiquitous in chemical processes such as catalytic hydrogenation and hydrogen storage. Atomic level information concerning the kinetics of this process, the structural evolution of catalysts during hydrogen spillover, as well as the nature of participation of the spilled over H in catalysis, remain vastly lacking. Here, we provide insights to those questions with a solubilized polyoxometalate-supported single-atom catalyst which allows for the use of characterization techniques generally inaccessible to the study of heterogeneous catalysts. Hydrogenation kinetics together with poisoning studies further reveal that hydrogen spillover can be either detrimental or beneficial for catalysis, the direction and magnitude of which depends mostly on the nature of the reducible functional group. Similar trends were observed on one of the most prototypical hydrogen spillover catalysts-Pt/WO3 .

4.
Proc Natl Acad Sci U S A ; 115(20): 5093-5098, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712826

RESUMO

Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.


Assuntos
Aminoácidos/metabolismo , Biomassa , Nanopartículas/química , Nanotubos de Carbono/química , Aminoácidos/química , Catálise , Hidrogenação , Níquel/química , Rutênio/química
5.
Chem Eng J ; 405: 127036, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958996

RESUMO

Key challenges for the application of biodiesel include their high acid value, high viscosity, and low ester content. It is essential to develop later-generation biodiesel from unexploited non-food resources for a more sustainable future. Reuse of biowaste is critically important to address these issues of food safety and sustainability. Thus, the co-transesterification of waste cooking oil (WCO), algal oil (AO) and dimethyl carbonate (DMC) for the synthesis of fatty acid methyl esters (FAMEs) was investigated over a series of nanoparticle catalysts containing calcium, magnesium, potassium or nickel under mild reaction conditions. Nanoparticle catalyst samples were prepared from biowaste sources of chicken manure (CM), water hyacinth (WH) and algal bloom (AB), and characterized using XRD, Raman and FESEM techniques for the heterogeneous production of biodiesel. The catalyst was initially prepared by calcination at 850 °C for 4 h in a major presence of CaxMgyCO3, KCl and K2CO3. The WCO and AO co-conversion of 98% and FAMEs co-selectivity of 95% were obtained over CM nanoparticle catalyst under the reaction conditions of 80 °C, 20 mins and DMC to oil molar ratio of 6:1 with 3% catalyst loading and 3% methanol addition. Under the optimum condition, the density, viscosity, and cetane number of the biodiesel were in the range of diesel standards. Nanoparticle catalysts have been proven as a promising sustainable material in the catalytic transesterification of WCO and AO with the major presence of calcium, magnesium and potassium. This study highlights a sustainable approach via biowaste utilization for the enhancement of biodiesel quality with high ester content, low acid value, high cetane number, and low viscosity.

6.
Angew Chem Int Ed Engl ; 60(9): 4764-4773, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33206456

RESUMO

Single-atom catalysts (SACs) have become a prominent theme in heterogeneous catalysis, not least because of the potential fundamental insight into active sites. The desired level of understanding, however, is prohibited due to the inhomogeneity of most supported SACs and the lack of suitable tools for structure-activity correlation studies with atomic resolution. Herein, we describe the potency of electrospray ionization mass spectrometry (ESI-MS) to study molecularly defined SACs supported on polyoxometalates in catalytic reactions. We identified the exact composition of active sites and their evolution in the catalytic cycle during CO and alcohol oxidation reactions performed in the liquid phase. Critical information on metal-dependent reaction mechanisms, the key intermediates, the dynamics of active sites and even the stepwise activation barriers were obtained, which would be challenging to gather via prevailingly adopted techniques in SAC research. DFT calculations revealed intricate details of the reaction mechanisms, and strong synergies between ESI-MS defined SAC sites and electronic structure theory calculations become apparent.

7.
Angew Chem Int Ed Engl ; 60(10): 5527-5535, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33269513

RESUMO

The upgrading of plastic waste is one of the grand challenges for the 21st century owing to its disruptive impact on the environment. Here, we show the first example of the upgrading of various aromatic plastic wastes with C-O and/or C-C linkages to arenes (75-85 % yield) via catalytic hydrogenolysis over a Ru/Nb2 O5 catalyst. This catalyst not only allows the selective conversion of single-component aromatic plastic, and more importantly, enables the simultaneous conversion of a mixture of aromatic plastic to arenes. The excellent performance is attributed to unique features including: (1) the small sized Ru clusters on Nb2 O5 , which prevent the adsorption of aromatic ring and its hydrogenation; (2) the strong oxygen affinity of NbOx species for C-O bond activation and Brønsted acid sites for C-C bond activation. This study offers a catalytic path to integrate aromatic plastic waste back into the supply chain of plastic production under the context of circular economy.

8.
Angew Chem Int Ed Engl ; 59(45): 20183-20191, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32770613

RESUMO

A CO2 -mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd-Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6 @S-1 catalyst afforded a formate generation rate of 2151 molformate molPd -1 h-1 at 353 K, and an initial turnover frequency of 6860 mol H 2 molPd -1 h-1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2 -mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.

9.
Inorg Chem ; 57(9): 5004-5012, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683319

RESUMO

Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Replicação do DNA/efeitos dos fármacos , DNA/biossíntese , RNA/biossíntese , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Cristalografia por Raios X , DNA/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Plasmídeos , RNA/química , Relação Estrutura-Atividade
10.
Science ; 383(6684): 757-763, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359117

RESUMO

Electric fields play a key role in enzymatic catalysis and can enhance reaction rates by 100,000-fold, but the same rate enhancements have yet to be achieved in thermochemical heterogeneous catalysis. In this work, we probe the influence of catalyst potential and interfacial electric fields on heterogeneous Brønsted acid catalysis. We observed that variations in applied potential of ~380 mV led to a 100,000-fold rate enhancement for 1-methylcyclopentanol dehydration, which was catalyzed by carbon-supported phosphotungstic acid. Mechanistic studies support a model in which the interfacial electrostatic potential drop drives quasi-equilibrated proton transfer to the adsorbed substrate prior to rate-limiting C-O bond cleavage. Large increases in rate with potential were also observed for the same reaction catalyzed by Ti/TiOyHx and for the Friedel Crafts acylation of anisole with acetic anhydride by carbon-supported phosphotungstic acid.

11.
Chem Sci ; 14(26): 7154-7160, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416702

RESUMO

Electrochemical polarization, which often plays a critical role in driving chemical reactions at solid-liquid interfaces, can arise spontaneously through the exchange of ions and/or electrons across the interface. However, the extent to which such spontaneous polarization prevails at nonconductive interfaces remains unclear because such materials preclude measuring and controlling the degree of interfacial polarization via standard (i.e., wired) potentiometric methods. Herein, we circumvent the limitations of wired potentiometry by applying infrared and ambient pressure X-ray photoelectron spectroscopies (AP-XPS) to probe the electrochemical potential of nonconductive interfaces as a function of solution composition. As a model class of macroscopically nonconductive interfaces, we specifically probe the degree of spontaneous polarization of ZrO2-supported Pt and Au nanoparticles immersed in aqueous solutions of varying pH. Shifts in the Pt-adsorbed CO vibrational band position evince electrochemical polarization of the Pt/ZrO2-water interface with changing pH, and AP-XPS reveals quasi-Nernstian shifts of the electrochemical potential of Pt and Au with pH in the presence of H2. These results indicate that spontaneous proton transfer via equilibrated H+/H2 interconversion spontaneously polarizes metal nanoparticles even when supported on a nonconductive host. Consequently, these findings indicate that solution composition (i.e., pH) can be an effective handle for tuning interfacial electrical polarization and potential at nonconductive interfaces.

12.
JACS Au ; 1(5): 536-542, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467316

RESUMO

The acceleration of Faradaic reactions by oscillating electric potentials has emerged as a viable tool to enhance electrocatalysis, but the non-Faradaic dynamic promotion of thermal catalytic processes remains to be proven. Here, we present experimental evidence showing that oscillating potentials are capable of enhancing the rate of ethylene hydrogenation despite no promotion effect being observed under static potentials. The non-Faradaic dynamic enhancement reaches up to 553% on a Pd/C electrode when cycling between -0.25 and 0.55 VNHE under optimized conditions with a frequency of around 0.1 Hz and a duty cycle of 99%. Under those conditions, the catalytic reaction rates were promoted beyond the rate of charge transfer to the electrode surface, confirming the non-Faradaic nature of the process. Experiments in different electrolytes reveal a good correlation between the catalytic enhancement and the double-layer capacitance, a measure for the interfacial electric field strength. Preliminary kinetic data is consistent with cyclic removal of adsorbates from the surface at negative potential and the subsequent adsorption of H2 and C2H4 and hydrogenation reaction at the positively polarized surface.

13.
Chem Sci ; 11(6): 1456-1468, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32180922

RESUMO

Despite the indisputable success of conventional approaches to manipulate the performance of heterogeneous catalysts by tuning the composition and structure of active sites, future research on catalysis engineering will likely go beyond the catalyst itself. Recently, several auxiliary promotion methods, either promoting the activity of reagents or enabling optimized adsorbate-catalyst interactions, have been proven as viable strategies to enhance catalytic reactions. Those auxiliary promotion methods range from electric/magnetic fields and electric potentials to mechanic stress, significantly altering the properties of reagent molecules and/or the surface characteristics of nanostructured catalysts. Apart from static enhancement effects, they in principle also allow for spatially and temporally variable modifications of catalyst surfaces. While some of those methods have been demonstrated, some are only theoretically predicted, opening exciting avenues for future experimental advances. Besides fundamental descriptions and comparisons of each activation method, in this perspective we plan to provide examples for the applications of those techniques for a variety of catalytic reactions as diverse as N2 and CO2 hydrogenation as well as electrochemical water splitting. Finally, we provide a unifying view and guidelines for future research into the use of promotion methods, generating deeper understanding of the complex dynamics on the nanoparticle surface under auxiliary promotion and the expansion of auxiliary techniques to different sustainability-related reactions.

14.
Nat Commun ; 11(1): 4899, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994420

RESUMO

Chemical synthesis of amino acids from renewable sources is an alternative route to the current processes based on fermentation. Here, we report visible-light-driven amination of biomass-derived α-hydroxyl acids and glucose into amino acids using NH3 at 50 °C. Ultrathin CdS nanosheets are identified as an efficient and stable catalyst, exhibiting an order of magnitude higher activity towards alanine production from lactic acid compared to commercial CdS as well as CdS nanoobjects bearing other morphologies. Its unique catalytic property is attributed mainly to the preferential formation of oxygen-centered radicals to promote α-hydroxyl acids conversion to α-keto acids, and partially to the poor H2 evolution which is an undesired side reaction. Encouragingly, a number of amino acids are prepared using the current protocol, and one-pot photocatalytic conversion of glucose to alanine is also achieved. This work offers an effective catalytic system for amino acid synthesis from biomass feedstocks under mild conditions.


Assuntos
Alanina/síntese química , Compostos de Cádmio/química , Sulfetos/química , Alanina/química , Biomassa , Catálise/efeitos da radiação , Hidrogênio/química , Ácido Láctico/química , Luz , Modelos Químicos , Oxigênio/química
15.
Nat Commun ; 10(1): 1330, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902990

RESUMO

Single-atom catalysts have recently been applied in many applications such as CO oxidation. Experimental in situ investigations into this reaction, however, are limited. Hereby, we present a suite of operando/in situ spectroscopic experiments for structurally well-defined atomically dispersed Rh on phosphotungstic acid during CO oxidation. The identification of several key intermediates and the steady-state catalyst structure indicate that the reactions follow an unconventional Mars-van Krevelen mechanism and that the activation of O2 is rate-limiting. In situ XPS confirms the contribution of the heteropoly acid support while in situ DRIFT spectroscopy consolidates the oxidation state and CO adsorption of Rh. As such, direct observation of three key components, i.e., metal center, support and substrate, is achieved, providing a clearer picture on CO oxidation on atomically dispersed Rh sites. The obtained information are used to engineer structurally similar catalysts that exhibit T20 values up to 130 °C below the previously reported Rh1/NPTA.

16.
Adv Mater ; 30(47): e1802304, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30051915

RESUMO

Research on single-atom catalysts (SACs), or atomically dispersed catalysts, has been quickly gaining momentum over the past few years. Although the unique electronic structure of singly dispersed atoms enables uncommon-sometimes exceptional-activities and selectivities for various catalytic applications, developing reliable and general procedures for preparing stable, active SACs in particular for applications under reductive conditions remains a major issue. Herein, the challenges associated with the synthesis of SACs are highlighted semiquantitatively and three stabilization techniques inspired by colloidal science including steric, ligand, and electrostatic stabilization are proposed. Some recent examples are discussed in detail to showcase the power of these strategies in the synthesis of stable SACs without compromising catalytic activity. The substantial further potential of steric, ligand, and electrostatic effects for developing SACs is emphasized. A perspective is given to point out opportunities and remaining obstacles, with special attention given to electrostatic stabilization where little is done so far. The stabilization strategies presented herein have a wide applicability in the synthesis of a series of new SACs with improved performances.

17.
Chem Asian J ; 13(8): 1053-1059, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29464882

RESUMO

The development of new methods to synthesize nanometric metal catalysts has always been an important and prerequisite step in advanced catalysis. Herein, we design a stable nitrogen ligated Pt complex for the straightforward synthesis by carbonization of uniformly sized atomic and sub-nanometric Pt catalysts supported on mesoporous silica. During the carbonization of the Pt precursor into active Pt species, the nitrogen-containing ligand directed the decomposition in a controlled fashion to maintain uniform sizes of the Pt species. The nitrogen ligand had a key role to stabilize the single Pt atoms on a weak anchoring support like silica. The Pt catalysts exhibited remarkable activities in the hydrogenation of common organic functional groups with turnover frequencies higher than in previous studies. By a simple post-synthetic treatment, we could selectively remove the Pt nanoparticles to obtain a mixture of single atoms and nanoclusters, extending the applicability of the present method.

18.
Nanoscale ; 10(48): 23113-23121, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30512030

RESUMO

Quasi-homogeneous ligand-protected gold nanoclusters (Au NCs) with atomic precision and well-defined structure offer great opportunity for exploring the catalytic nature of nanogold catalysts at a molecular level. Herein, using real-time electrospray ionization mass spectrometry (ESI-MS), we have successfully identified the desorption and re-adsorption of p-mercaptobenzoic acid (p-MBA) ligands from Au25(p-MBA)18 NC catalysts during the hydrogenation of 4-nitrophenol in solution. This ligand dynamic (desorption and re-adsorption) would initiate structural transformation of Au25(p-MBA)18 NC catalysts during the reaction, forming a mixture of smaller Au NCs (Au23(p-MBA)16 as the major species) at the beginning of catalytic reaction, which could further be transformed into larger Au NCs (Au26(p-MBA)19 as the major species). The adsorption of hydrides (from NaBH4) is identified as the determining factor that could induce the ligand dynamic and structural transformation of NC catalysts. This study provides fundamental insights into the catalytic nature of Au NCs, including catalytic mechanism, active species and stability of Au NC catalysts during a catalytic reaction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa