RESUMO
Contact tracing is a pillar of COVID-19 response, but language access and equity have posed major obstacles. COVID-19 has disproportionately affected minority communities with many non-English-speaking members. Language discordance can increase processing times and hamper the trust building necessary for effective contact tracing. We demonstrate how matching predicted patient language with contact tracer language can enhance contact tracing. First, we show how to use machine learning to combine information from sparse laboratory reports with richer census data to predict the language of an incoming case. Second, we embed this method in the highly demanding environment of actual contact tracing with high volumes of cases in Santa Clara County, CA. Third, we evaluate this language-matching intervention in a randomized controlled trial. We show that this low-touch intervention results in 1) significant time savings, shortening the time from opening of cases to completion of the initial interview by nearly 14 h and increasing same-day completion by 12%, and 2) improved engagement, reducing the refusal to interview by 4%. These findings have important implications for reducing social disparities in COVID-19; improving equity in healthcare access; and, more broadly, leveling language differences in public services.
Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Busca de Comunicante/métodos , Idioma , SARS-CoV-2 , Algoritmos , COVID-19/epidemiologia , California/epidemiologia , Barreiras de Comunicação , Busca de Comunicante/estatística & dados numéricos , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pandemias/prevenção & controle , Inquéritos e Questionários , ConfiançaRESUMO
Importance: Overcoming social barriers to COVID-19 testing is an important issue, especially given the demographic disparities in case incidence rates and testing. Delivering culturally appropriate testing resources using data-driven approaches in partnership with community-based health workers is promising, but little data are available on the design and effect of such interventions. Objectives: To assess and evaluate a door-to-door COVID-19 testing initiative that allocates visits by community health workers by selecting households in areas with a high number of index cases, by using uncertainty sampling for areas where the positivity rate may be highest, and by relying on local knowledge of the health workers. Design Setting and Participants: This cohort study was performed from December 18, 2020, to February 18, 2021. Community health workers visited households in neighborhoods in East San Jose, California, based on index cases or uncertainty sampling while retaining discretion to use local knowledge to administer tests. The health workers, also known as promotores de salud (hereinafter referred to as promotores) spent a mean of 4 days a week conducting door-to-door COVID-19 testing during the 2-month study period. All residents of East San Jose were eligible for COVID-19 testing. The promotores were selected from the META cooperative (Mujeres Empresarias Tomando Acción [Entrepreneurial Women Taking Action]). Interventions: The promotores observed self-collection of anterior nasal swab samples for SARS-CoV-2 reverse transcriptase-polymerase chain reaction tests. Main Outcomes and Measures: A determination of whether door-to-door COVID-19 testing was associated with an increase in the overall number of tests conducted, the demographic distribution of the door-to-door tests vs local testing sites, and the difference in positivity rates among the 3 door-to-door allocation strategies. Results: A total of 785 residents underwent door-to-door testing, and 756 were included in the analysis. Among the 756 individuals undergoing testing (61.1% female; 28.2% aged 45-64 years), door-to-door COVID-19 testing reached different populations than standard public health surveillance, with 87.6% (95% CI, 85.0%-89.8%) being Latinx individuals. The closest available testing site only reached 49.0% (95% CI, 48.3%-49.8%) Latinx individuals. Uncertainty sampling provided the most effective allocation, with a 10.8% (95% CI, 6.8%-16.0%) positivity rate, followed by 6.4% (95% CI, 4.1%-9.4%) for local knowledge, and 2.6% (95% CI, 0.7%-6.6%) for index area selection. The intervention was also associated with increased overall testing capacity by 60% to 90%, depending on the testing protocol. Conclusions and Relevance: In this cohort study of 785 participants, uncertainty sampling, which has not been used conventionally in public health, showed promising results for allocating testing resources. Community-based door-to-door interventions and leveraging of community knowledge were associated with reduced demographic disparities in testing.