Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876764

RESUMO

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Assuntos
Ferro/metabolismo , Neurotransmissores/biossíntese , Proteínas Nucleares/metabolismo , Pterinas/química , Proteína Gli2 com Dedos de Zinco/metabolismo , Humanos , Ferro/química , Proteínas Nucleares/química , Oxigênio/metabolismo , Pterinas/metabolismo , Triptofano/química , Triptofano/metabolismo , Proteína Gli2 com Dedos de Zinco/química
2.
J Inorg Biochem ; 104(2): 136-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939457

RESUMO

Insight into the nature of oxygen activation in tryptophan hydroxylase has been obtained from density functional computations. Conformations of O(2)-bound intermediates have been studied with oxygen trans to glutamate and histidine, respectively. An O(2)-adduct with O(2)trans to histidine (O(his)) and a peroxo intermediate with peroxide trans to glutamate (P(glu)) were found to be consistent (0.57-0.59mm/s) with experimental Mössbauer isomer shifts (0.55mm/s) and had low computed free energies. The weaker trans influence of histidine is shown to give rise to a bent O(2) coordination mode with O(2) pointing towards the cofactor and a more activated O-O bond (1.33A) than in O(glu) (1.30A). It is shown that the cofactor can hydrogen bond to O(2) and activate the O-O bond further (from 1.33 to 1.38A). The O(his) intermediate leads to a ferryl intermediate (F(his)) with an isomer shift of 0.34mm/s, also consistent with the experimental value (0.25mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5A from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so a two-state scenario involving O(his) and P(glu) is possible. A structure of the activated deoxy state which is high-spin implies that the valence electron count has been lowered from 18 to 16 (glutamate becomes bidentate), giving a "green light" that invites O(2)-binding. Our mechanism of oxygen activation in tryptophan hydroxylase does not require inversion of spin, which may be an important observation.


Assuntos
Modelos Químicos , Oxigênio/química , Triptofano Hidroxilase/química , Triptofano/química , Animais , Calibragem , Catálise , Domínio Catalítico , Simulação por Computador , Elétrons , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxigênio/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa