Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Infect Dis ; 227(11): 1245-1254, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36869698

RESUMO

Alveolar type II (ATII) pneumocytes as defenders of the alveolus are critical to repairing lung injury. We investigated the ATII reparative response in coronavirus disease 2019 (COVID-19) pneumonia, because the initial proliferation of ATII cells in this reparative process should provide large numbers of target cells to amplify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus production and cytopathological effects to compromise lung repair. We show that both infected and uninfected ATII cells succumb to tumor necrosis factor-α (TNF)-induced necroptosis, Bruton tyrosine kinase (BTK)-induced pyroptosis, and a new PANoptotic hybrid form of inflammatory cell death mediated by a PANoptosomal latticework that generates distinctive COVID-19 pathologies in contiguous ATII cells. Identifying TNF and BTK as the initiators of programmed cell death and SARS-CoV-2 cytopathic effects provides a rationale for early antiviral treatment combined with inhibitors of TNF and BTK to preserve ATII cell populations, reduce programmed cell death and associated hyperinflammation, and restore functioning alveoli in COVID-19 pneumonia.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patologia , Piroptose , Necroptose , Pulmão/patologia
2.
J Virol ; 96(15): e0088522, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856674

RESUMO

Anti-retroviral therapy (ART) generally suppresses HIV replication to undetectable levels in peripheral blood, but immune activation associated with increased morbidity and mortality is sustained during ART, and infection rebounds when treatment is interrupted. To identify drivers of immune activation and potential sources of viral rebound, we modified RNAscope in situ hybridization to visualize HIV-producing cells as a standard against which to compare the following assays of potential sources of immune activation and virus rebound following treatment interruption: (i) envelope detection by induced transcription-based sequencing (EDITS) assay; (ii) HIV-Flow; (iii) Flow-FISH assays that can scan tissues and cell suspensions to detect rare cells expressing env mRNA, gag mRNA/Gag protein and p24; and (iv) an ultrasensitive immunoassay that detects p24 in cell/tissue lysates at subfemtomolar levels. We show that the sensitivities of these assays are sufficient to detect one rare HIV-producing/env mRNA+/p24+ cell in one million uninfected cells. These high-throughput technologies provide contemporary tools to detect and characterize rare cells producing virus and viral antigens as potential sources of immune activation and viral rebound. IMPORTANCE Anti-retroviral therapy (ART) has greatly improved the quality and length of life for people living with HIV, but immune activation does not normalize during ART, and persistent immune activation has been linked to increased morbidity and mortality. We report a comparison of assays of two potential sources of immune activation during ART: rare cells producing HIV and the virus' major viral protein, p24, benchmarked on a cell model of active and latent infections and a method to visualize HIV-producing cells. We show that assays of HIV envelope mRNA (EDITS assay), gag mRNA, and p24 (Flow-FISH, HIV-Flow. and ultrasensitive p24 immunoassay) detect HIV-producing cells and p24 at sensitivities of one infected cell in a million uninfected cells, thereby providing validated tools to explore sources of immune activation during ART in the lymphoid and other tissue reservoirs.


Assuntos
Infecções por HIV , HIV-1 , RNA Viral , Tropismo Viral , Ativação Viral , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Antígenos Virais/análise , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Humanos , Imunoensaio , Hibridização in Situ Fluorescente , RNA Mensageiro/análise , RNA Viral/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
3.
J Infect Dis ; 225(12): 2167-2175, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275599

RESUMO

Starting antiretroviral therapy (ART) in Fiebig 1 acute HIV infection limits the size of viral reservoirs in lymphoid tissues, but does not impact time to virus rebound during a treatment interruption. To better understand why the reduced reservoir size did not increase the time to rebound we measured the frequency and location of HIV RNA+ cells in lymph nodes from participants in the RV254 acute infection cohort. HIV RNA+ cells were detected more frequently and in greater numbers when ART was initiated in Fiebig 1 compared to later Fiebig stages and were localized to the T-cell zone compared to the B-cell follicle with treatment in later Fiebig stages. Variability of virus production in people treated during acute infection suggests that the balance between virus-producing cells and the immune response to clear infected cells rapidly evolves during the earliest stages of infection. Clinical Trials Registration: NCT02919306.


Assuntos
Infecções por HIV , Linfonodos , RNA Viral , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Linfonodos/virologia , RNA Viral/isolamento & purificação
4.
Nature ; 530(7588): 51-56, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814962

RESUMO

Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.


Assuntos
Portador Sadio/tratamento farmacológico , Portador Sadio/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Carga Viral , Replicação Viral , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Portador Sadio/sangue , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/sangue , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , Haplótipos/efeitos dos fármacos , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/virologia , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Seleção Genética/efeitos dos fármacos , Análise de Sequência de DNA , Análise Espaço-Temporal , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
J Infect Dis ; 224(9): 1593-1598, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33693750

RESUMO

We demonstrate that human immunodeficiency virus (HIV) gag p24 protein is more readily detected in gut and lymph node tissues than in blood CD4+ T cells and correlates better with CD4 count during antiretroviral therapy (ART). Gut p24 levels also measurably decline with ART in natural controllers. During ART, gut p24 expression is more strongly associated both with HIV-specific CD8+ T-cell frequency and plasma soluble CD14 levels than gut HIV RNA expression. This study supports using gag p24 as a marker of HIV expression in HIV+ tissues to study effects of viral persistence and to monitor efficacy of treatment in HIV-based clearance studies.


Assuntos
Proteína do Núcleo p24 do HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Biomarcadores/sangue , Biópsia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Feminino , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , Ativação Linfocitária
6.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842333

RESUMO

Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.


Assuntos
HIV-1/imunologia , Latência Viral/imunologia , Latência Viral/fisiologia , Animais , Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Infecções por HIV/virologia , Soropositividade para HIV/tratamento farmacológico , HIV-1/patogenicidade , Humanos , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/imunologia , Ativação Viral , Replicação Viral
7.
Nature ; 514(7524): 642-5, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119033

RESUMO

To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn), whose role in protecting against infection in vivo has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01) was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers in vitro while retaining FcγRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian-human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores Fc/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Administração Retal , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação/genética , Antígenos CD4/metabolismo , Feminino , HIV/química , HIV/imunologia , Anticorpos Anti-HIV/análise , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/imunologia , Meia-Vida , Imunidade nas Mucosas/imunologia , Imunização Passiva , Mucosa Intestinal/imunologia , Macaca mulatta , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Reto/imunologia , Vírus da Imunodeficiência Símia/imunologia , Transcitose
8.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118125

RESUMO

Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and ß chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.


Assuntos
Proteínas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Macaca mulatta , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
10.
PLoS Pathog ; 12(12): e1006104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27959961

RESUMO

Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Citometria de Fluxo , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Macaca mulatta , Reação em Cadeia da Polimerase em Tempo Real , Vagina/imunologia , Vagina/virologia , Carga Viral
11.
J Immunol ; 196(6): 2809-18, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864031

RESUMO

Live attenuated vaccines such as SIV with a deleted nef gene have provided the most robust protection against subsequent vaginal challenge with wild-type (WT) SIV in the SIV-rhesus macaque model of HIV-1 transmission to women. Hence, identifying correlates of this protection could enable design of an effective HIV-1 vaccine. One such prechallenge correlate of protection from vaginal challenge has recently been identified as a system with three components: 1) IgG Abs reacting with the viral envelope glycoprotein trimeric gp41; 2) produced by plasma cells in the submucosa and ectopic tertiary lymphoid follicles in the ectocervix and vagina; and 3) concentrated on the path of virus entry by the neonatal FcR in the overlying epithelium. We now examine the mucosal production of the Ab component of this system after vaginal challenge. We show that vaginal challenge immediately elicits striking increases in plasma cells not only in the female reproductive tract but also at other mucosal sites, and that these increases correlate with low but persistent replication at mucosal sites. We describe vaginal ectopic follicles that are structurally and functionally organized similar to follicles in secondary lymphoid organs, and we provide inferential evidence for a key role of the female reproductive tract epithelium in facilitating Ab production, affinity maturation, and class switch recombination. Vaccination thus accesses an epithelial-immune system axis in the female reproductive tract to respond to exposure to mucosal pathogens. Designing strategies to mimic this system could advance development of an effective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Epitélio/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Vagina/imunologia , Animais , Anticorpos Antivirais/metabolismo , Epitélio/imunologia , Feminino , Proteína gp41 do Envelope de HIV/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Humoral , Imunidade nas Mucosas , Imunização , Macaca mulatta , Receptores Fc/metabolismo , Vacinas Atenuadas , Internalização do Vírus , Replicação Viral
13.
Nature ; 491(7422): 129-33, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23023123

RESUMO

Developing a vaccine for human immunodeficiency virus (HIV) may be aided by a complete understanding of those rare cases in which some HIV-infected individuals control replication of the virus. Most of these elite controllers express the histocompatibility alleles HLA-B*57 or HLA-B*27 (ref. 3). These alleles remain by far the most robust associations with low concentrations of plasma virus, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinate Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control, with three Mamu-B*08-restricted CD8(+) T-cell epitopes, and demonstrate that these vaccinated animals control replication of the highly pathogenic clonal simian immunodeficiency virus (SIV) mac239 virus. High frequencies of CD8(+) T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon were associated with viral control. Moreover, the frequency of the CD8(+) T-cell response against the Nef RL10 epitope (Nef amino acids 137-146) correlated significantly with reduced acute phase viraemia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8(+) T-cell responses in the control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8(+) T-cell responses can control replication of the AIDS virus.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/virologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , HIV-1/imunologia , Antígeno HLA-B27/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Viremia/imunologia , Viremia/prevenção & controle
14.
Proc Natl Acad Sci U S A ; 112(10): E1126-34, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713386

RESUMO

Antiretroviral therapy (ART) suppresses HIV replication in most individuals but cannot eradicate latently infected cells established before ART was initiated. Thus, infection rebounds when treatment is interrupted by reactivation of virus production from this reservoir. Currently, one or a few latently infected resting memory CD4 T cells are thought be the principal source of recrudescent infection, but this estimate is based on peripheral blood rather than lymphoid tissues (LTs), the principal sites of virus production and persistence before initiating ART. We, therefore, examined lymph node (LN) and gut-associated lymphoid tissue (GALT) biopsies from fully suppressed subjects, interrupted therapy, monitored plasma viral load (pVL), and repeated biopsies on 12 individuals as soon as pVL became detectable. Isolated HIV RNA-positive (vRNA+) cells were detected by in situ hybridization in LTs obtained before interruption in several patients. After interruption, multiple foci of vRNA+ cells were detected in 6 of 12 individuals as soon as pVL was measureable and in some subjects, in more than one anatomic site. Minimal estimates of the number of rebounding/founder (R/F) variants were determined by single-gene amplification and sequencing of viral RNA or DNA from peripheral blood mononuclear cells and plasma obtained at or just before viral recrudescence. Sequence analysis revealed a large number of R/F viruses representing recrudescent viremia from multiple sources. Together, these findings are consistent with the origins of recrudescent infection by reactivation from many latently infected cells at multiple sites. The inferred large pool of cells and sites to rekindle recrudescent infection highlights the challenges in eradicating HIV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV/fisiologia , Tecido Linfoide/virologia , Adulto , Fármacos Anti-HIV/administração & dosagem , Contagem de Linfócito CD4 , Esquema de Medicação , HIV/genética , Infecções por HIV/virologia , Humanos , Hibridização In Situ , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , RNA Viral/sangue , Carga Viral
15.
PLoS Med ; 14(11): e1002461, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29182633

RESUMO

BACKGROUND: Notwithstanding 1 documented case of HIV-1 cure following allogeneic stem cell transplantation (allo-SCT), several subsequent cases of allo-SCT in HIV-1 positive individuals have failed to cure HIV-1 infection. The aim of our study was to describe changes in the HIV reservoir in a single chronically HIV-infected patient on suppressive antiretroviral therapy who underwent allo-SCT for treatment of acute lymphoblastic leukemia. METHODS AND FINDINGS: We prospectively collected peripheral blood mononuclear cells (PBMCs) by leukapheresis from a 55-year-old man with chronic HIV infection before and after allo-SCT to measure the size of the HIV-1 reservoir and characterize viral phylogeny and phenotypic changes in immune cells. At day 784 post-transplant, when HIV-1 was undetectable by multiple measures-including PCR measurements of both total and integrated HIV-1 DNA, replication-competent virus measurement by large cell input quantitative viral outgrowth assay, and in situ hybridization of colon tissue-the patient consented to an analytic treatment interruption (ATI) with frequent clinical monitoring. He remained aviremic off antiretroviral therapy until ATI day 288, when a low-level virus rebound of 60 HIV-1 copies/ml occurred, which increased to 1,640 HIV-1 copies/ml 5 days later, prompting reinitiation of ART. Rebounding plasma HIV-1 sequences were phylogenetically distinct from proviral HIV-1 DNA detected in circulating PBMCs before transplantation. The main limitations of this study are the insensitivity of reservoir measurements, and the fact that it describes a single case. CONCLUSIONS: allo-SCT led to a significant reduction in the size of the HIV-1 reservoir and a >9-month-long ART-free remission from HIV-1 replication. Phylogenetic analyses suggest that the origin of rebound virus was distinct from the viruses identified pre-transplant in the PBMCs.


Assuntos
Infecções por HIV/terapia , Carga Viral/efeitos dos fármacos , Antirretrovirais/uso terapêutico , HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Filogenia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Transplante de Células-Tronco/métodos , Carga Viral/fisiologia
16.
PLoS Pathog ; 11(3): e1004740, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768938

RESUMO

The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Fatores de Transcrição/imunologia , Proteínas Virais Reguladoras e Acessórias , Animais , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Macaca mulatta , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Fatores de Transcrição/genética
17.
Proc Natl Acad Sci U S A ; 111(6): 2307-12, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469825

RESUMO

Antiretroviral therapy can reduce HIV-1 to undetectable levels in peripheral blood, but the effectiveness of treatment in suppressing replication in lymphoid tissue reservoirs has not been determined. Here we show in lymph node samples obtained before and during 6 mo of treatment that the tissue concentrations of five of the most frequently used antiretroviral drugs are much lower than in peripheral blood. These lower concentrations correlated with continued virus replication measured by the slower decay or increases in the follicular dendritic cell network pool of virions and with detection of viral RNA in productively infected cells. The evidence of persistent replication associated with apparently suboptimal drug concentrations argues for development and evaluation of novel therapeutic strategies that will fully suppress viral replication in lymphatic tissues. These strategies could avert the long-term clinical consequences of chronic immune activation driven directly or indirectly by low-level viral replication to thereby improve immune reconstitution.


Assuntos
Fármacos Anti-HIV/farmacocinética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/fisiologia , Tecido Linfoide/metabolismo , Replicação Viral , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Meia-Vida , Humanos , Masculino , Adulto Jovem
18.
J Virol ; 89(11): 5895-903, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787288

RESUMO

UNLABELLED: Pathogen-specific neutralizing antibodies protect against many viral infections and can potentially prevent human immunodeficiency virus (HIV) transmission in humans. However, neutralizing antibodies have so far only been shown to protect nonhuman primates (NHP) against lentiviral infection when given shortly before challenge. Thus, the clinical utility and feasibility of passive antibody transfer to confer long-term protection against HIV-1 are still debated. Here, we investigate the potential of a broadly neutralizing HIV-1 antibody to provide long-term protection in a NHP model of HIV-1 infection. A human antibody was simianized to avoid immune rejection and used to sustain therapeutic levels for ∼5 months. Two months after the final antibody administration, animals were completely protected against viral challenge. These findings demonstrate the feasibility and potential of long-term passive antibody for protection against HIV-1 in humans and provide a model to test antibody therapies for other diseases in NHP. IMPORTANCE: Antibodies against HIV are potential drugs that may be able to prevent HIV infection in humans. However, the long-term protective capacity of antibodies against HIV has not been assessed. Here, we repetitively administered a macaque version of a human anti-HIV antibody to monkeys, after which the antibody persisted in the blood for >5 months. Moreover, the antibody could be sustained at protective levels for 108 days, conferring protection 52 days after the last dose in a monkey model of HIV infection. Thus, passive antibody transfer can provide durable protection against infection by viruses that cause AIDS in primates.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Imunização Passiva , Macaca , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Resultado do Tratamento
19.
J Virol ; 89(16): 8334-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041300

RESUMO

Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 g/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Imunoglobulina G/genética , Modelos Moleculares , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/genética , Ciclosporina/farmacologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Anticorpos Anti-HIV/genética , Humanos , Imunossupressores/farmacologia , Macaca mulatta , Dados de Sequência Molecular , Testes de Neutralização , Reação em Cadeia da Polimerase em Tempo Real
20.
PLoS Pathog ; 10(1): e1003872, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24415939

RESUMO

Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA(+) cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Imunotoxinas/farmacologia , RNA Viral/sangue , Animais , Antirretrovirais/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunotoxinas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa