Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(12): E2486-E2493, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270618

RESUMO

Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Sobrevivência Celular , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Feminino , Citometria de Fluxo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Sindecana-3/genética , Sindecana-3/metabolismo
2.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666369

RESUMO

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Adolescente , Idade de Início , Animais , Criança , Feminino , Fibroblastos , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/metabolismo , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem
3.
Hum Mol Genet ; 23(22): 5961-75, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951541

RESUMO

Golgi fragmentation is an early hallmark of many neurodegenerative diseases but its pathophysiological relevance and molecular mechanisms are unclear. We here demonstrate severe and progressive Golgi fragmentation in motor neurons of progressive motor neuronopathy (pmn) mice due to loss of the Golgi-localized tubulin-binding cofactor E (TBCE). Loss of TBCE in mutant pmn and TBCE-depleted motor neuron cultures causes defects in Golgi-derived microtubules, as expected, but surprisingly also reduced levels of COPI subunits, decreased recruitment of tethering factors p115/GM130 and impaired Golgi SNARE-mediated vesicle fusion. Conversely, ARF1, which stimulates COPI vesicle formation, enhances the recruitment of TBCE to the Golgi, increases polymerization of Golgi-derived microtubules and rescues TBCE-linked Golgi fragmentation. These data indicate an ARF1/TBCE-mediated cross-talk that coordinates COPI formation and tubulin polymerization at the Golgi. We conclude that interruption of this cross-talk causes Golgi fragmentation in pmn mice and hypothesize that similar mechanisms operate in human amyotrophic lateral sclerosis and spinal muscular atrophy.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Chaperonas Moleculares/metabolismo , Atrofia Muscular Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Fator 1 de Ribosilação do ADP/genética , Esclerose Lateral Amiotrófica/genética , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Modelos Animais de Doenças , Complexo de Golgi/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Neurônios Motores/química , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Polimerização , Transdução de Sinais , Tubulina (Proteína)/química
4.
Proc Natl Acad Sci U S A ; 110(1): 348-53, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248270

RESUMO

In healthy adults, activation of γ-aminobutyric acid (GABA)(A) and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl(-)](i)), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E(IPSP), in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT(2A) receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT(2A)R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2).


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios Motores/metabolismo , Espasticidade Muscular/tratamento farmacológico , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/farmacologia , Traumatismos da Medula Espinal/complicações , Simportadores/metabolismo , Animais , Western Blotting , Compostos Bicíclicos com Pontes/farmacologia , Cloretos/metabolismo , Reflexo H , Imuno-Histoquímica , Metilaminas/farmacologia , Espasticidade Muscular/etiologia , Ratos , Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Cotransportadores de K e Cl-
5.
Neurobiol Dis ; 82: 269-280, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26107889

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease. Human motor neurons generated from induced pluripotent stem cells (iPSc) offer new perspectives for disease modeling and drug testing in ALS. In standard iPSc-derived cultures, however, the two major phenotypic alterations of ALS--degeneration of motor neuron cell bodies and axons--are often obscured by cell body clustering, extensive axon criss-crossing and presence of unwanted cell types. Here, we succeeded in isolating 100% pure and standardized human motor neurons by a novel FACS double selection based on a p75(NTR) surface epitope and an HB9::RFP lentivirus reporter. The p75(NTR)/HB9::RFP motor neurons survive and grow well without forming clusters or entangled axons, are electrically excitable, contain ALS-relevant motor neuron subtypes and form functional connections with co-cultured myotubes. Importantly, they undergo rapid and massive cell death and axon degeneration in response to mutant SOD1 astrocytes. These data demonstrate the potential of FACS-isolated human iPSc-derived motor neurons for improved disease modeling and drug testing in ALS and related motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica , Citometria de Fluxo/métodos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Adulto , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Astrócitos/patologia , Astrócitos/fisiologia , Axônios/patologia , Axônios/fisiologia , Sobrevivência Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Lentivirus , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Mutação , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
6.
Nat Genet ; 32(3): 443-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12389029

RESUMO

Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.


Assuntos
Doenças dos Nervos Cranianos/genética , Chaperonas Moleculares/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Northern Blotting , Células COS , Mapeamento Cromossômico , Cruzamentos Genéticos , Análise Mutacional de DNA , Vetores Genéticos , Células HeLa , Humanos , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
7.
Stem Cell Res ; 66: 102998, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528014

RESUMO

The most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) is the expansion of a G4C2 hexanucleotide repeat in the C9orf72 gene. The size of the repeat expansion is highly variable and a cut-off of 30 repeats has been suggested as the lower pathological limit. Repeat size variability has been observed intergenerationally and intraindividually in tissues from different organs and within the same tissue, suggesting instability of the pathological repeat expansion. In order to study this genomic instability, we established iPSCs from five members of the same family of which four carried a C9orf72 repeat expansion and one was wild-type.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas/genética , Proteína C9orf72/genética , Células-Tronco Pluripotentes Induzidas/patologia , Expansão das Repetições de DNA/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética
8.
Nat Med ; 11(4): 423-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15768028

RESUMO

Mutations in Cu/Zn superoxide dismutase (encoded by SOD1), one of the causes of familial amyotrophic lateral sclerosis (ALS), lead to progressive death of motoneurons through a gain-of-function mechanism. RNA interference (RNAi) mediated by viral vectors allows for long-term reduction in gene expression and represents an attractive therapeutic approach for genetic diseases characterized by acquired toxic properties. We report that in SOD1(G93A) transgenic mice, a model for familial ALS, intraspinal injection of a lentiviral vector that produces RNAi-mediated silencing of SOD1 substantially retards both the onset and the progression rate of the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Interferência de RNA , Superóxido Dismutase/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Vetores Genéticos , Humanos , Lentivirus , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , RNA Interferente Pequeno
9.
Mol Cell Neurosci ; 46(2): 409-18, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21111824

RESUMO

Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane of endosomal intermediates called multivesicular bodies. They represent ways for discarding proteins and metabolites and also for intercellular transfer of proteins and RNAs. In the nervous system, it has been hypothesized that exosomes might be involved in the normal physiology of the synapse and possibly allow the trans-synaptic propagation of pathogenic proteins throughout the tissue. As a first step to validate this concept, we used biochemical and morphological approaches to demonstrate that mature cortical neurons in culture do indeed secrete exosomes. Using electron microscopy, we observed exosomes being released from somato-dendritic compartments. The endosomal origin of exosomes was demonstrated by showing that the C-terminal domain of tetanus toxin specifically endocytosed by neurons and accumulating inside multivesicular bodies, is released in the extracellular medium in association with exosomes. Finally, we found that exosomal release is modulated by glutamatergic synaptic activity, suggesting that this process might be part of normal synaptic physiology. Thus, our study paves the way towards the demonstration that exosomes take part in the physiology of the normal and pathological nervous system.


Assuntos
Exossomos/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Exossomos/ultraestrutura , Glutamina/metabolismo , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Ratos , Sinapses/ultraestrutura
10.
Curr Opin Neurobiol ; 18(3): 284-91, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18725296

RESUMO

Cell death plays an important role both in shaping the developing nervous system and in neurological disease and traumatic injury. In spite of their name, death receptors can trigger either cell death or survival and growth. Recent studies implicate five death receptors--Fas/CD95, TNFR1 (tumor necrosis factor receptor-1), p75NTR (p75 neurotrophin receptor), DR4, and DR5 (death receptors-4 and -5)--in different aspects of neural development or degeneration. Their roles may be neuroprotective in models of Parkinson's disease, or pro-apoptotic in ALS and stroke. Such different outcomes probably reflect the diversity of transcriptional and posttranslational signaling pathways downstream of death receptors in neurons and glia.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Receptores de Morte Celular/metabolismo , Transdução de Sinais/fisiologia , Animais
11.
Artigo em Inglês | MEDLINE | ID: mdl-33602014

RESUMO

Primary lateral sclerosis (PLS) is a rare neurodegenerative disease characterized by progressive degeneration of upper motor neurons (UMNs). Recent studies shed new light onto the cellular events that are particularly important for UMN maintenance including intracellular trafficking, mitochondrial energy homeostasis and lipid metabolism. This review summarizes these advances including the role of Alsin as a gene linked to atypical forms of juvenile PLS, and discusses wider aspects of cellular pathology that have been observed in adult forms of PLS. The review further discusses the prospects of new transgenic upper motor neuron reporter mice, human stem cell-derived UMN cultures, cerebral organoids and non-human primates as future model systems to better understand and ultimately treat PLS.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Fatores de Troca do Nucleotídeo Guanina , Camundongos , Doença dos Neurônios Motores/genética , Neurônios Motores
12.
Stem Cells ; 26(10): 2564-75, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18635866

RESUMO

Stem cell-based therapies hold therapeutic promise for degenerative motor neuron diseases, such as amyotrophic lateral sclerosis, and for spinal cord injury. Fetal neural progenitors present less risk of tumor formation than embryonic stem cells but inefficiently differentiate into motor neurons, in line with their low expression of motor neuron-specific transcription factors and poor response to soluble external factors. To overcome this limitation, we genetically engineered fetal rat spinal cord neurospheres to express the transcription factors HB9, Nkx6.1, and Neurogenin2. Enforced expression of the three factors rendered neural precursors responsive to Sonic hedgehog and retinoic acid and directed their differentiation into cholinergic motor neurons that projected axons and formed contacts with cocultured myotubes. When transplanted in the injured adult rat spinal cord, a model of acute motor neuron degeneration, the engineered precursors transiently proliferated, colonized the ventral horn, expressed motor neuron-specific differentiation markers, and projected cholinergic axons in the ventral root. We conclude that genetic engineering can drive the differentiation of fetal neural precursors into motor neurons that efficiently engraft in the spinal cord. The strategy thus holds promise for cell replacement in motor neuron and related diseases. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Evolução Molecular Direcionada , Engenharia Genética , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Diferenciação Celular , Movimento Celular , Colina/metabolismo , Técnicas de Cocultura , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos , Ratos , Traumatismos da Medula Espinal/patologia , Raízes Nervosas Espinhais/patologia , Transplante de Células-Tronco , Fatores de Transcrição/metabolismo
13.
Mol Biol Cell ; 17(3): 1075-84, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16371511

RESUMO

Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ciclo Celular/química , Células Cultivadas , Chlorocebus aethiops , Evolução Molecular , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina
14.
Neuron ; 35(5): 893-905, 2002 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12372284

RESUMO

Target innervation by specific neuronal populations involves still incompletely understood interactions between central and peripheral factors. We show that glial cell line-derived neurotrophic factor (GDNF), initially characterized for its role as a survival factor, is present early in the plexus of the developing forelimb and later in two muscles: the cutaneus maximus and latissimus dorsi. In the absence of GDNF signaling, motor neurons that normally innervate these muscles are mispositioned within the spinal cord and muscle invasion by their axons is dramatically reduced. The ETS transcription factor PEA3 is normally expressed by these motor neurons and fails to be induced in most of them in GDNF signaling mutants. Thus, GDNF acts as a peripheral signal to induce PEA3 expression in specific motor neuron pools thereby regulating both cell body position and muscle innervation.


Assuntos
Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Mamíferos , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios Motores/citologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Técnicas de Cultura de Órgãos/métodos , Transdução de Sinais/fisiologia
15.
Neuron ; 35(6): 1067-83, 2002 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12354397

RESUMO

Death pathways restricted to specific neuronal classes could potentially allow for precise control of developmental neuronal death and also underlie the selectivity of neuronal loss in neurodegenerative disease. We show that Fas-triggered death of normal embryonic motoneurons requires transcriptional upregulation of neuronal NOS and involves Daxx, ASK1, and p38 together with the classical FADD/caspase-8 cascade. No evidence for involvement of this pathway was found in cells other than motoneurons. Motoneurons from transgenic mice overexpressing ALS-linked SOD1 mutants (G37R, G85R, or G93A) displayed increased susceptibility to activation of this pathway: they were more sensitive to Fas- or NO-triggered cell death but not to trophic deprivation or excitotoxic stimulation. Thus, triggering of a motoneuron-restricted cell death pathway by neighboring cells might contribute to motoneuron loss in ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Morte Celular/genética , Sistema Nervoso Central/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios Motores/metabolismo , Mutação/genética , Superóxido Dismutase/metabolismo , Receptor fas/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Transporte/metabolismo , Caspase 8 , Caspase 9 , Caspases/metabolismo , Células Cultivadas , Proteínas Correpressoras , Proteína de Domínio de Morte Associada a Fas , Feminino , Feto , Ligação Genética/genética , MAP Quinase Quinase Quinase 5 , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Chaperonas Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Proteínas Nucleares/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Superóxidos/metabolismo , Regulação para Cima/genética , Receptor fas/genética , Proteínas Quinases p38 Ativadas por Mitógeno
16.
J Neurosci ; 27(33): 8779-89, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699660

RESUMO

Axonal degeneration represents one of the earliest pathological features in motor neuron diseases. We here studied the underlying molecular mechanisms in progressive motor neuronopathy (pmn) mice mutated in the tubulin-specific chaperone TBCE. We demonstrate that TBCE is a peripheral membrane-associated protein that accumulates at the Golgi apparatus. In pmn mice, TBCE is destabilized and disappears from the Golgi apparatus of motor neurons, and microtubules are lost in distal axons. The axonal microtubule loss proceeds retrogradely in parallel with the axonal dying back process. These degenerative changes are inhibited in a dose-dependent manner by transgenic TBCE complementation that restores TBCE expression at the Golgi apparatus. In cultured motor neurons, the pmn mutation, interference RNA-mediated TBCE depletion, and brefeldin A-mediated Golgi disruption all compromise axonal tubulin routing. We conclude that motor axons critically depend on axonal tubulin routing from the Golgi apparatus, a process that involves TBCE and possibly other tubulin chaperones.


Assuntos
Complexo de Golgi/metabolismo , Chaperonas Moleculares/fisiologia , Doença dos Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Degeneração Neural/patologia , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Progressão da Doença , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Complexo de Golgi/efeitos dos fármacos , Proteínas de Fluorescência Verde , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Microtúbulos/metabolismo , Microtúbulos/patologia , Microtúbulos/ultraestrutura , Chaperonas Moleculares/genética , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/metabolismo , Medula Espinal/patologia
19.
Brain Pathol ; 27(4): 459-471, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27488538

RESUMO

Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.


Assuntos
Transporte Axonal/genética , Microtúbulos/metabolismo , Doença dos Neurônios Motores/complicações , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/patologia , Nervo Sural/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Gânglios Espinais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Microtúbulos/genética , Microtúbulos/ultraestrutura , Chaperonas Moleculares/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Nervo Frênico/patologia , Nervo Frênico/ultraestrutura , Polimerização , Nervo Sural/metabolismo , Nervo Sural/ultraestrutura
20.
Mol Neurodegener ; 11(1): 43, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27277231

RESUMO

BACKGROUND: Pathological Golgi fragmentation represents a constant pre-clinical feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) but its molecular mechanisms remain hitherto unclear. RESULTS: Here, we show that the severe Golgi fragmentation in transgenic mutant SOD1(G85R) and SOD1(G93A) mouse motor neurons is associated with defective polymerization of Golgi-derived microtubules, loss of the COPI coat subunit ß-COP, cytoplasmic dispersion of the Golgi tether GM130, strong accumulation of the ER-Golgi v-SNAREs GS15 and GS28 as well as tubular/vesicular Golgi fragmentation. Data mining, transcriptomic and protein analyses demonstrate that both SOD1 mutants cause early presymptomatic and rapidly progressive up-regulation of the microtubule-destabilizing proteins Stathmins 1 and 2. Remarkably, mutant SOD1-triggered Golgi fragmentation and Golgi SNARE accumulation are recapitulated by Stathmin 1/2 overexpression but completely rescued by Stathmin 1/2 knockdown or the microtubule-stabilizing drug Taxol. CONCLUSIONS: We conclude that Stathmin-triggered microtubule destabilization mediates Golgi fragmentation in mutant SOD1-linked ALS and potentially also in related motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Complexo de Golgi/patologia , Microtúbulos/patologia , Neurônios Motores/patologia , Estatmina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neurônios Motores/metabolismo , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa