Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 18(11): e2106826, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35048516

RESUMO

In microfluidics, centrifugal forces are important for centrifugal microfluidic chips and curved microchannels. Here, an unrecognized use of the centrifugal effect in microfluidics is introduced. The assembly of helical soft matter fibers in a rotating microcapillary is investigated. During assembly, the fibers undergo phase separation, generating particle stabilized bicontinuous interfacially jammed emulsions gels. This process is accompanied by a transition of the fiber density over time. As a result, the direction of the centrifugal force in the rotating microcapillary changes. The authors analyze this effect systematically with high-speed video microscopy and complementary computer simulations. The resulting understanding enables the control of the helical fiber assembly into microropes. These microropes can be converted into pH responsive hydrogels that swell and shrink with potential applications in tissue engineering, soft robotics, controlled release, and sensing. More generally, the knowledge gained from this work shows that centrifugal forces potentially enable directed self-assembly or separation of colloids, biological cells, and emulsions in microfluidics.


Assuntos
Hidrogéis , Microfluídica , Coloides , Concentração de Íons de Hidrogênio , Microfluídica/métodos , Engenharia Tecidual
2.
Soft Matter ; 17(8): 2034-2041, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443510

RESUMO

Droplets are spherical due to the principle of interfacial energy minimization. Here, we show that nonequilibrium droplet shapes can be stabilized via the interfacial self-assembly and crosslinking of nanoparticles. This principle allows for the stability of practically infinitely long liquid tubules and monodisperse cylindrical droplets. Droplets of oil-in-water are elongated via gravitational or hydrodynamic forces at a reduced interfacial tension. Silica nanoparticles self-assemble and cross-link on the interface triggered by the synergistic surface modification with hexyltrimethylammonium- and trivalent lanthanum-cations. The droplet length dependence is described by a scaling relationship and the rate of nanoparticle deposition on the droplets is estimated. Our approach potentially enables the 3D-printing of Newtonian Fluids, broadening the array of material options for additive manufacturing techniques.

3.
Mol Ecol ; 29(18): 3446-3465, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741004

RESUMO

Non-native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.


Assuntos
Ecossistema , Caramujos , Animais , Teorema de Bayes , Europa (Continente) , Variação Genética , Espécies Introduzidas , Nova Zelândia , América do Norte , Ontário
4.
Langmuir ; 35(26): 8584-8602, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30808166

RESUMO

In situ surface modification of nanoparticles has a rich industrial history, but in recent years, it has also received increased attention in the field of directed self-assembly. In situ techniques rely on components within a Pickering emulsion system, such as amphiphiles that act as hydrophobizers or ionic species that screen charges, to drive the interfacial assembly of particles. Instead of stepwise procedures to chemically tune the particle wettability, in situ methods use elements already present within the system to alter the nanoparticle interfacial behavior, often depending on Coulombic interactions to simplify operations. The surface modifications are not contingent on specific chemical reactions, which further enables a multitude of possible nanoparticles to be used within a given system. In recent studies, in situ methods have been combined with external means of shaping the interface to produce materials with high interfacial areas and complex geometries. These systems have facilely tunable properties, enabling their use in an extensive array of applications. In this feature article, in honor of the late Prof. Helmuth Möhwald, we review how in situ techniques have influenced the development of soft, advanced materials, covering the fundamental interfacial phenomena with an outlook on materials science.

5.
Soft Matter ; 15(16): 3379-3388, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30932124

RESUMO

Bicontinuous interfacially jammed emulsion gels (bijels) formed via solvent transfer induced phase separation (STrIPS) are new soft materials with potential applications in separations, healthcare, or catalysis. To facilitate their applications, means to fabricate STrIPS bijels with nanoparticles of various surface chemistries are needed. Here, we investigate the formation of STrIPS bijels with nanoparticles of different wettabilities, ranging from partially hydrophobic to extremely hydrophilic. To this end, the surface wettability of silica nanoparticles is tailored by functionalization with ligands bearing either hydrophobic or hydrophilic terminal groups. We show that partially hydrophobic particles with acrylate groups can impart short-term stability to STrIPS bijels on their own. However, to enable long-term stability, the use of cationic surfactants is needed. Partially hydrophobic particles require short chain surfactants for morphological stability while glycerol-functionalized hydrophilic particles require double chain cationic surfactants. Variation of the surfactant concentration results in various STrIPS bijel morphologies with controllable domain sizes. Last, we show that functional groups on the nanoparticles facilitate interfacial cross-linking for the purposes of reinforcing STrIPS bijels. Our research lays the foundation for the use of a wide variety of solid particles, irrespective of their surface wettabilities, to fabricate bijels with potential applications in Pickering interfacial catalysis and as cross-flow microreactors.

6.
Langmuir ; 34(3): 847-853, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28609107

RESUMO

Polyelectrolyte microcapsules are versatile compartments for encapsulation, protection, and controlled/triggered release of active agents. Conventional methods of polyelectrolyte microcapsule preparation require multiple steps or do not allow for efficient encapsulation of active agents in the lumen of the microcapsule. In this work, we present the fabrication of hollow polyelectrolyte microcapsules with a salt-responsive property based on surfactant organized nanoscale interfacial complexation in emulsions (SO NICE). In SO NICE, polyelectrolyte microcapsules are templated by water-in-oil-in-water (W/O/W) double emulsions. One polyelectrolyte is dissolved in the inner water droplet of the W/O/W double emulsions, whereas the second polyelectrolyte is dissolved in the organic phase by hydrophobic ion paring with an oppositely charged hydrophobic surfactant. Interfacial complexation of the two polyelectrolytes generates a few hundred-nanometer thick film at the inner water-oil interface of the W/O/W double emulsions. SO NICE microcapsules can be triggered to release their cargo by increasing the ionic strength of the solution, which is a hallmark of polyelectrolyte-based microcapsules. By enabling dissolution and interfacial complexation of polyelectrolytes in organic solvents, SO NICE widens the pallet of polymers that can be used to generate functional polyelectrolyte microcapsules with high encapsulation efficiency for applications in encapsulation and controlled/triggered release.

7.
J Hered ; 109(4): 477-483, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29206981

RESUMO

The recently discovered insect order Mantophasmatodea currently comprises 19 Southern African species. These mainly occur in allopatry, have high levels of color polymorphism and communicate via species- and gender-specific vibratory signals. High levels of interspecific morphological conservatism mean that cryptic species are likely to be uncovered. These aspects of Mantophasmatodean biology make them an ideal group in which to investigate population divergence due to habitat-specific adaptation, sexual selection, and potentially sensory speciation. Lack of appropriate genetic markers has thus far rendered such studies unfeasible. To address this need, the first microsatellite loci for this order were developed. Fifty polymorphic loci were designed specifically for Karoophasma biedouwense (Austrophasmatidae), out of which 23 were labeled and tested for amplification across the order using 2-3 individuals from 10 species, representing all 4 currently known families. A Bayesian mitochondrially encoded cytochrome c oxidase I (COI) topology was reconstructed and divergence dates within the order were estimated for the first time. Amplification success and levels of polymorphism were compared with genetic divergence and time since divergence. In agreement with studies on vertebrate taxa, both amplification and variability were negatively correlated with distance (temporal and genetic). The high number of informative loci will offer sufficient resolution for both broad level population genetic analysis and individual based pedigree or parentage analyses for most species in Austrophasmatidae, with at least some loci available for the other families. This resource will facilitate research into the evolutionary biology of this understudied but fascinating group.


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Pterigotos/genética , Animais , Teorema de Bayes , Ecossistema , Feminino , Deriva Genética , Marcadores Genéticos/genética , Masculino , Linhagem
8.
Parasitol Res ; 116(1): 313-325, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785600

RESUMO

Haematophagous leeches express a broad variety of bioactive factors that are released from the salivary gland cells into the wound of a host during feeding. Among these, hirudin is probably the best studied factor and, moreover, the only one that has successfully made the transition from nature to clinical use. Many components of the leech saliva still remain either poorly characterized or yet completely unknown. Only recently, a new class of leech-derived factors has been discovered in Hirudo medicinalis, the hirudin-like factors (HLFs). HLFs comprise typical structural features of hirudin but lack others. We were able to verify the expression of HLFs not only in two additional species of the genus Hirudo, but also in Hirudinaria manillensis. Various phylogenetic analyses based on gene and protein sequences support a sister group relationship between hirudins and HLFs. Although potential molecular targets of HLFs remain unknown, the presence of multiple isoforms in individual leeches of different genera points to key functions in the regulation of several processes associated with the blood-sucking life style of leeches.


Assuntos
Hirudinas/metabolismo , Sanguessugas/metabolismo , Filogenia , Animais , Regulação da Expressão Gênica/fisiologia , Hirudinas/química , Saliva/química
9.
Mol Phylogenet Evol ; 89: 171-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929789

RESUMO

The islands of New Caledonia represent one of the world's biodiversity hotspots with many endemic species including freshwater gastropods of the family Tateidae. A phylogenetic analysis based on the mitochondrial COI and 16S rRNA and the nuclear ITS2 genes revealed two cryptic genera, Crosseana gen. n. and Novacaledonia gen. n. In order to provide character-based diagnoses we modified a DNA barcoding approach identifying strings of pairwise diagnostic characters, i.e. alignment positions, at which two genera are alternatively fixed for different nucleotides. The combination or string of all pairwise diagnostic characters was unique for each genus. Inconsistent mitochondrial and nuclear topologies suggest that Hemistomia cockerelli Haase and Bouchet, 1998 and H. fabrorum Haase and Bouchet, 1998, two morphologically well-defined species, hybridize. The age of the most recent common ancestor of the New Caledonian radiation of Tateidae was estimated at 24.6±9.5 MY. These findings are in line with the notion that New Caledonia is rather a Darwinian island that was colonized after an extended phase of submergence - in case of the tateids probably from Australia - despite being a fragment of Gondwanaland.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Gastrópodes/classificação , Gastrópodes/genética , Filogenia , Animais , Austrália , Biodiversidade , DNA Mitocondrial/genética , Água Doce , Gastrópodes/anatomia & histologia , Marcadores Genéticos/genética , Nova Caledônia , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
10.
Parasitology ; 142(9): 1183-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25924680

RESUMO

The diversity and prevalence of malaria parasites of the genera Plasmodium and Haemoproteus were determined in the globally-threatened Aquatic Warbler Acrocephalus paludicola. Birds were sampled during migration in Portugal and at the wintering quarters in Senegal and parasites were detected using molecular methods. Only three generalist parasite lineages (Plasmodium) were found. There were no significant differences in the prevalence of parasites between sexes in Europe, but adults had higher prevalence than first-year birds, and birds in Europe had higher prevalence than those captured in Africa. When comparing with other Acrocephalus species and taking sample size into account, Aquatic Warblers had the lowest prevalence and, together with another threatened species, the Seychelles Warbler Acrocephalus sechellensis, the lowest diversity of malaria parasites. We hypothesize that the low diversity of parasites and absence of specialist lineages of Aquatic Warblers are caused by its small population size and fragmented distribution. Furthermore, Aquatic Warblers' extreme habitat specialization may decrease their exposure to malaria parasites, but other explanations such as high mortality (which would constraint the sampling of infected birds) or, in contrast, very efficient immunological system in clearing the infections cannot be ruled out. This study contributes to explain variation in prevalence and diversity of malaria parasites among hosts.


Assuntos
Doenças das Aves/parasitologia , Variação Genética , Haemosporida/genética , Passeriformes , Infecções Protozoárias em Animais/parasitologia , Animais , Espécies em Perigo de Extinção , Haemosporida/isolamento & purificação , Estações do Ano
11.
Angew Chem Int Ed Engl ; 53(44): 11793-7, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25199633

RESUMO

Multiple emulsions with an "onion" topology are useful vehicles for drug delivery, biochemical assays, and templating materials. They can be assembled by ternary liquid phase separation by microfluidics, but the control over their design is limited because the mechanism for their creation is unknown. Herein we show that phase separation occurs through self-similar cycles of mass transfer, spinodal decomposition or nucleation, and coalescence into multiple layers. Mapping out the phase diagram shows a linear relationship between the diameters of concentric layers, the slope of which depends on the initial ternary composition and the molecular weight of the surfactant. These general rules quantitatively predict the number of droplet layers (multiplicity), which we used to devise self-assembly routes for polymer capsules and liposomes. Moreover, we extended the technique to the assembly of lipid-stabilized droplets with ordered internal structures.

12.
J Colloid Interface Sci ; 678(Pt A): 201-208, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39191099

RESUMO

HYPOTHESIS: Functionalizing colloidal particles with oppositely charged surfactants is crucial for stabilizing emulsions, foams, all-liquid structures, and bijels. However, surfactants can reduce the attachment energy, the driving force for colloidal self-assembly at interfaces. An open question remains on how the inherent interfacial activity of cationic surfactants influences the interfacial rigidity of particle-laden interfaces. We hypothesize that charge screening among cationic surfactants regulates the rigidity of oil/water interfaces by reducing the attachment energy of nanoparticles. EXPERIMENTS: We investigate the interfacial rigidity of cetyltrimethylammonium bromide (CTAB) functionalized silica nanoparticles (Ludox® TMA) by analyzing the shape deformation of 1,4-butanediol diacrylate (BDA) droplets under varying salt and alcohol concentrations. The nanoparticle packing density is assessed using scanning electron microscopy. Attachment energy is characterized through interfacial tension measurements, three-phase contact angle analysis, and CTAB adsorption studies. We also examine the effects of interfacial rigidities on the structure of bijel films formed via roll-to-roll solvent transfer-induced phase separation (R2R-STrIPS) using confocal laser scanning microscopy. FINDINGS: Increasing salt and alcohol concentrations decrease the interfacial rigidity of CTAB-functionalized nanoparticle films by reducing the interfacial tension. The contact angle has a minor influence on the rigidity. These results indicate that CTAB charge screening weakens the nanoparticle attachment energy to the interface. Controlling the rigidity enables the mass production of bijel sheets with consistent flatness, which is crucial for their potential applications in catalysis, energy storage, tissue engineering, and filtration membranes.

13.
Mater Horiz ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081221

RESUMO

Large surface areas are important for enhancing mass and energy transfer in biological and technological processes. Bicontinuous interfacially jammed emulsion gels (bijels) increase the surface area between two fluids by intertwining them into particle stabilized networks. To facilitate efficient mass and energy exchange via the bijels' high surface area, the fluid networks need to be connected to their respective bulk phases. Here, we generate bijels between two bulk fluids and investigate the connections the bijel makes. We analyze these connections by investigating the colloidal stability, interfacial rheology and mass transfer dynamics during bijel formation. To this end, we employ confocal and electron microscopy, as well as dynamic light scattering, pendant drop analysis, electrophoretic mobility measurements and diffusion simulations. We find that the connections the bijel makes to the bulk fluid can be disrupted by severe colloidal aggregation and interruptions of the bicontinuous fluid network. However, the addition of alcohol to the bulk fluid moderates aggregation and allows undisturbed fluid network formation, facilitating open connections between bijel and bulk fluid. The unprecedented control of bijel pore connections from this research will be crucial for the application of bijels as separation membranes, electrochemical energy storage materials and chemical reactors.

14.
Adv Sci (Weinh) ; : e2406223, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162178

RESUMO

Nanoparticle-stabilized, bicontinuous interfacially jammed emulsion gels (bijels) find potential applications as battery, separation membrane, and chemical reactor materials. Decreasing the liquid domain sizes of bijels to sub-micrometer dimensions requires surfactants, complicating bijel synthesis and postprocessing into functional nanomaterials. This work introduces surfactant-free bijels with sub-micrometer domains, solely stabilized by nanoparticles. To this end, the covalent surface functionalization of silica nanoparticles is characterized by thermogravimetric analysis, mass spectrometry, Fourier-transform infrared spectroscopy, and contact angle measurements. Bijels are generated with the functionalized nanoparticles via solvent transfer induced phase separation (STrIPS), enabling the optimization of nanoparticle functionalization and surface ionization. Nanoparticles of intermediate functionalization and controlled negative surface charge stabilize bijels with sub-micrometer liquid domains. This remarkable control over bijel synthesis provides urgently needed progress to facilitate the widespread implementation of bijels as nanomaterials in research and applications.

15.
Evol Lett ; 8(4): 561-574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100234

RESUMO

Plasticity is found in all domains of life and is particularly relevant when populations experience variable environmental conditions. Traditionally, evolutionary models of plasticity are non-mechanistic: they typically view reactions norms as the target of selection, without considering the underlying genetics explicitly. Consequently, there have been difficulties in understanding the emergence of plasticity, and in explaining its limits and costs. In this paper, we offer a novel mechanistic approximation for the emergence and evolution of plasticity. We simulate random "epigenetic mutations" in the genotype-phenotype mapping, of the kind enabled by DNA-methylations/demethylations. The frequency of epigenetic mutations at loci affecting the phenotype is sensitive to organism stress (trait-environment mismatch), but is also genetically determined and evolvable. Thus, the "random motion" of epigenetic markers enables developmental learning-like behaviors that can improve adaptation within the limits imposed by the genotypes. However, with random motion being "goal-less," this mechanism is also vulnerable to developmental noise leading to maladaptation. Our individual-based simulations show that epigenetic mutations can hide alleles that are temporarily unfavorable, thus enabling cryptic genetic variation. These alleles can be advantageous at later times, under regimes of environmental change, in spite of the accumulation of genetic loads. Simulations also demonstrate that plasticity is favored by natural selection in constant environments, but more under periodic environmental change. Plasticity also evolves under directional environmental change as long as the pace of change is not too fast and costs are low.

16.
Mol Phylogenet Evol ; 66(3): 715-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23142112

RESUMO

Although phylogenetic studies are increasingly utilizing multi-locus datasets, a review of GenBank data for the Gastropoda indicates a strong bias towards a few short gene fragments (most commonly COI, LSU rRNA, and SSU rRNA). This is particularly the case for the Rissooidea, one of the largest and most taxonomically difficult gastropod superfamilies. Here we analyze fragments of these three genes from 90 species to determine whether they can well resolve higher relationships within this superfamily, whether structurally aligned sequence datasets increase phylogenetic signal, and whether the inclusion of highly variable regions introduces noise. We also used the resulting phylogenetic data in combination with morphological/anatomical evidence to re-evaluate the taxonomic status of 'hydrobioid' family-level groups. Our results indicate that all three of the alignment strategies that were used resulted in phylogenies having similar signal levels. However, there was a slight advantage to using structural alignment for inferring family-level relationships. Moreover, the set of 'standard' gastropod genes supported recognition of many previously recognized families and provides new insight into the systematics of several problematic groups. However, some family-group taxa were unresolved and the relationships among families were also poorly supported, suggesting a need for more extensive sampling and inclusion of additional genes.


Assuntos
Evolução Molecular , Gastrópodes/genética , Filogenia , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Teorema de Bayes , Fragmentação do DNA , Gastrópodes/anatomia & histologia , Gastrópodes/classificação , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência
17.
BMC Evol Biol ; 12: 157, 2012 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-22920688

RESUMO

BACKGROUND: The circumscription of the avian superfamily Sylvioidea is a matter of long ongoing debate. While the overall inclusiveness has now been mostly agreed on and 20 families recognised, the phylogenetic relationships among the families are largely unknown. We here present a phylogenetic hypothesis for Sylvioidea based on one mitochondrial and six nuclear markers, in total ~6.3 kbp, for 79 ingroup species representing all currently recognised families and some species with uncertain affinities, making this the most comprehensive analysis of this taxon. RESULTS: The resolution, especially of the deeper nodes, is much improved compared to previous studies. However, many relationships among families remain uncertain and are in need of verification. Most families themselves are very well supported based on the total data set and also by indels. Our data do not support the inclusion of Hylia in Cettiidae, but do not strongly reject a close relationship with Cettiidae either. The genera Scotocerca and Erythrocercus are closely related to Cettiidae, but separated by relatively long internodes. The families Paridae, Remizidae and Stenostiridae clustered among the outgroup taxa and not within Sylvioidea. CONCLUSIONS: Although the phylogenetic position of Hylia is uncertain, we tentatively support the recognition of the family Hyliidae Bannerman, 1923 for this genus and Pholidornis. We propose new family names for the genera Scotocerca and Erythrocercus, Scotocercidae and Erythrocercidae, respectively, rather than including these in Cettiidae, and we formally propose the name Macrosphenidae, which has been in informal use for some time. We recommend that Paridae, Remizidae and Stenostiridae are not included in Sylvioidea. We also briefly discuss the problems of providing a morphological diagnosis when proposing a new family-group name (or genus-group name) based on a clade.


Assuntos
Marcadores Genéticos , Passeriformes/classificação , Passeriformes/genética , Filogenia , Animais , Proteínas Aviárias/genética , Evolução Molecular , Mutação INDEL
18.
Mol Phylogenet Evol ; 62(1): 319-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22023826

RESUMO

Genetic distances are increasingly being used for identification and species delimitation, especially since the introduction of "barcoding". While for phylogenetic inferences great care is generally taken to choose the best-fit evolutionary model, this is usually neglected in calculating genetic distances. Moreover, distances obtained from others than best-fit models, different lengths of sequences, and even different loci are often freely compared. We examined the influence of different methods on calculating genetic distances using mitochondrial cytochrome b sequences for the passerine family Acrocephalidae. We found substantial differences between: (1) corrected distances based on the best-fit model (TrN+Γ) vs. uncorrected p-distances; (2) distances calculated based on different parts of the same gene; and (3) distances calculated using the methods of "complete deletion" vs. "pairwise deletion" for sequences that included uncertain nucleotides. All these methodological differences affected comparisons between species and potential taxonomical conclusions. We suggest that (1) different loci are incomparable. (2) Only perfectly homologous regions (same length, same part of locus) should be compared. (3) In the case of sequences with some uncertain nucleotides, only distances calculated by the method of "complete deletion" are fully comparable. (4) Only distances based on the optimal substitution model should be used. (5) Even within the same locus, corrected genetic distances are unique to the study in which they are calculated, as they are conditional on the particular dataset and model selected for that dataset.


Assuntos
Aves Canoras/genética , Animais , Proteínas Aviárias/genética , Sequência de Bases , Citocromos b/genética , Código de Barras de DNA Taxonômico/métodos , Haplótipos , Filogenia , Alinhamento de Sequência , Aves Canoras/classificação
19.
Ecol Evol ; 12(10): e9314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203624

RESUMO

Climate change may force organisms to adapt genetically or plastically to new environmental conditions. Invasive species show remarkable potential for rapid adaptation. The ovoviviparous New Zealand mud snail (NZMS), Potamopyrgus antipodarum, has successfully established across Europe with two clonally reproducing mitochondrial lineages since its arrival in the first half of the 19th century. Its remarkable variation in shell morphology was shown to be fitness relevant. We investigated the effects of temperature on shell morphology across 11 populations from Germany and the Iberian Peninsula in a common garden across three temperatures. We analyzed size and shape using geometric morphometrics. For both, we compared reaction norms and estimated heritabilities. For size, the interaction of temperature and haplotype explained about 50% of the total variance. We also observed more genotype by environment interactions indicating a higher degree of population differentiation than in shape. Across the three temperatures, size followed the expectations of the temperature-size rule, with individuals growing larger in cold environments. Changes in shape may have compensated for changes in size affecting space for brooding embryos. Heritability estimates were relatively high. As indicated by the very low coefficients of variation for clonal repeatability (CV A ), they can probably not be compared in absolute terms. However, they showed some sensitivity to temperature, in haplotype t more so than in z, which was only found in Portugal. The low CV A values indicate that genetic variation among European populations is still restricted with a low potential to react to selection. A considerable fraction of the genetic variation was due to differences between the clonal lineages. The NZMS has apparently not been long enough in Europe to accumulate significant genetic variation relevant for morphological adaptation. As temperature is obviously not the sole factor influencing shell morphology, their interaction will probably not be a factor limiting population persistence under a warming climate in Europe.

20.
Adv Mater ; 34(18): e2109547, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305279

RESUMO

Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold. Current restrictions for their use are the large fluid-channel sizes (>5 µm), limiting the fluid-fluid interaction surface-area, and the inability to flow liquids through the channels. In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m2 cm-3 is introduced. Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels via electroosmosis. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid-liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa