RESUMO
Titanium dioxide nanoparticles were synthesized by laser pyrolysis, their surface and electronic properties were modified by gold and/or nitrogen. These materials were characterized by different techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Time resolved conductivity (TRMC) was used to study the charge separation of electron/hole pairs. Altogether (XPS, EPR, TRMC), the physicochemical characterizations are well correlated with chemical photoactivity of the different samples. Their photocatalytic activity was evaluated for the degradation of linear carboxylic acids (C2-C3) under UV and visible illumination. The decomposition rate of acids was measured, it shows that the modification with gold increases the photoactivity while the presence of nitrogen slows down the process. Such observations are in good agreement with evolution of TRMC signals. A degradation pathway has been determined by identification of intermediate products by chromatography and EPR, results show different intermediate species. In particular EPR confirms the presence of NO2- paramagnetic centers and shows two novel N centered paramagnetic centers. A decrease of the degradation rate is observed with increase of carboxylic acid chain length.
RESUMO
The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.
Assuntos
Cobre/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Glutationa/metabolismo , Macrófagos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Proteômica , Transdução de Sinais/efeitos dos fármacosRESUMO
Laser synthesis was used for one-step synthesis of titania/graphene composites (G-TiO2 (C)) from a suspension of 0.04 wt% commercial reduced graphene oxide (rGO) dispersed in liquid titanium tetraisopropoxide (TTIP). Reference titania sample (TiO2(C)) was prepared by the same method without graphene addition. Both samples and commercial titania P25 were characterized by various methods and tested under UV/vis irradiation for oxidative decomposition of acetic acid and dehydrogenation of methanol (with and without Pt co-catalyst addition), and under vis irradiation for phenol degradation and inactivation of Escherichia coli. It was found that both samples (TiO2(C) and G-TiO2(C)) contained carbon resulting from TTIP and C2H4 (used as a synthesis sensitizer), which activated titania towards vis activity. The photocatalytic activity under UV/vis irradiation was like that by P25. The highest activity of TiO2(C) sample for acetic acid oxidation was probably caused by its surface enrichment with hydroxyl groups. G-TiO2(C) was the most active for methanol dehydrogenation in the absence of platinum (ca. five times higher activity than that by TiO2(C) and P25), suggesting that graphene works as a co-catalyst for hydrogen evolution. High activity under both UV and vis irradiation for decomposition of organic compounds, hydrogen evolution and inactivation of bacteria suggests that laser synthesis allows preparation of cheap (carbon-modified) and efficient photocatalysts for broad environmental applications.
RESUMO
This work presents an original synthesis of TiO2/graphene nanocomposites using laser pyrolysis for the demonstration of efficient and improved perovskite solar cells. This is a one-step and continuous process known for nanoparticle production, and it enables here the elaboration of TiO2 nanoparticles with controlled properties (stoichiometry, morphology, and crystallinity) directly grown on graphene materials. Using this process, a high quality of the TiO2/graphene interface is achieved, leading to an intimate electronic contact between the two materials. This effect is exploited for the photovoltaic application, where TiO2/graphene is used as an electron-extracting layer in n-i-p mesoscopic perovskite solar cells based on the reference CH3NH3PbI3-x Cl x halide perovskite active layer. A significant and reproducible improvement of power conversion efficiencies under standard illumination is demonstrated, reaching 15.3% in average compared to 13.8% with a pure TiO2 electrode, mainly due to a drastic improvement in fill factor. This beneficial effect of graphene incorporation is revealed through pronounced photoluminescence quenching in the presence of graphene, which indicates better electron injection from the perovskite active layer. Considering that a reduction of device hysteresis is also observed by graphene addition, the laser pyrolysis technique, which is compatible with large-scale industrial developments, is therefore a powerful tool for the production of efficient optoelectronic devices based on a broad range of carbon nano-objects.
RESUMO
Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO2 Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO2 Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO2) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.
RESUMO
Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.
RESUMO
Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.
Assuntos
Cobre/toxicidade , Macrófagos/metabolismo , Nanopartículas Metálicas/toxicidade , Proteômica/métodos , Titânio/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Di-Hidroxifenilalanina/farmacologia , Eletroforese em Gel Bidimensional , Indução Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Fagocitose/efeitos dos fármacosRESUMO
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.