Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Immunol Immunother ; 68(6): 883-895, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30847498

RESUMO

We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.


Assuntos
Cálcio/metabolismo , Quimiocinas/biossíntese , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Receptores de Quimiocinas/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Quimiocinas/farmacologia , Quimiotaxia/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados/farmacologia , Fumarato de Dimetilo/farmacologia , Fumaratos/química , Fumaratos/farmacologia , Células HCT116 , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia
2.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551549

RESUMO

The succinate receptor, SUCNR1, has been attributed to tumor progression, metastasis, and immune response modulation upon its activation via the oncometabolite succinate. Nonetheless, little is known about the prognostic relevance of SUCNR1 and its association with tumor immune infiltrates and microbiota in renal cell carcinoma (RCC). Herein, publicly available platforms including Human Protein Atlas, cBioPortal, TIMER2.0, and TISIDB were utilized to depict a divergent implication of SUCNR1 in the immune microenvironment of clear cell RCC (KIRC) and papillary RCC (KIRP); the two major subtypes of RCC. Our results showed that the SUCNR1 expression level was augmented in RCC compared to other solid cancers, yet with opposite survival rate predictions in RCC subtypes. Consequently, a higher expression level of SUCNR1 was associated with a good disease-specific survival rate (p = 5.797 × 10-5) in KIRC patients albeit a poor prognostic prediction in KIRP patients (p = 1.9282 × 10-3). Intriguingly, SUCNR1 was mainly correlated to immunomodulators and diverse immune infiltrates in KIRP. Additionally, the SUCNR1 was mostly associated with a repertoire of microbes including beneficial bacteria that likely influenced a better disease-specific survival rate in KIRC. Our findings illustrate a significant novel subtype-specific role of SUCNR1 in RCC which potentially modulates tumor immune infiltration and microbiome signature, hence altering the prognosis of cancer patients.

3.
Sci Rep ; 12(1): 2584, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173218

RESUMO

Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10-15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.


Assuntos
Azoospermia/complicações , Biomarcadores/análise , Biologia Computacional/métodos , Infertilidade Masculina/diagnóstico , Transcriptoma , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/genética , Masculino
4.
Life (Basel) ; 12(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207567

RESUMO

Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the "omics" perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.

5.
Life (Basel) ; 12(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36294997

RESUMO

Asthma is one of the most common and lifelong and chronic inflammatory diseases characterized by inflammation, bronchial hyperresponsiveness, and airway obstruction episodes. It is a heterogeneous disease of varying and overlapping phenotypes with many confounding factors playing a role in disease susceptibility and management. Such multifactorial disorders will benefit from using systems biology as a strategy to elucidate molecular insights from complex, quantitative, massive clinical, and biological data that will help to understand the underlying disease mechanism, early detection, and treatment planning. Systems biology is an approach that uses the comprehensive understanding of living systems through bioinformatics, mathematical, and computational techniques to model diverse high-throughput molecular, cellular, and the physiologic profiling of healthy and diseased populations to define biological processes. The use of systems biology has helped understand and enrich our knowledge of asthma heterogeneity and molecular basis; however, such methods have their limitations. The translational benefits of these studies are few, and it is recommended to reanalyze the different studies and omics in conjugation with one another which may help understand the reasons for this variation and help overcome the limitations of understanding the heterogeneity in asthma pathology. In this review, we aim to show the different factors that play a role in asthma heterogeneity and how systems biology may aid in understanding and deciphering the molecular basis of asthma.

6.
STAR Protoc ; 3(2): 101379, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35582459

RESUMO

We describe the protocol for identifying COVID-19 severity specific cell types and their regulatory marker genes using single-cell transcriptomics data. We construct COVID-19 comorbid disease-associated gene list using multiple databases and literature resources. Next, we identify specific cell type where comorbid genes are upregulated. We further characterize the identified cell type using gene enrichment analysis. We detect upregulation of marker gene restricted to severe COVID-19 cell type and validate our findings using in silico, in vivo, and in vitro cellular models. For complete details on the use and execution of this protocol, please refer to Nassir et al. (2021b).


Assuntos
COVID-19 , Biomarcadores , COVID-19/genética , Humanos , Transcriptoma/genética
7.
Front Public Health ; 9: 618828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816417

RESUMO

Background: The COVID-19 pandemic varies between countries, with suggestions that weather might contribute to the transmission mode, disease presentation, severity, and clinical outcomes. Yet the exact link between climate and COVID-19 is still not well-explored. Objectives: This study aimed to evaluate the effect of hot geographical region weather [like United Arab Emirates (UAE)] on COVID-19 clinical profile and outcomes. Temperature, wind speed, cloud cover, precipitation, and other weather-related variables were studied concerning COVID-19 patients outcomes and laboratory results. Methodology: A total of 434 COVID-19 positive patients admitted between January and June 2020, were recruited from Al Kuwait Hospital, Dubai, UAE. Temperature, wind speed, cloud cover, and precipitation rate were retrieved from history+ for the day when COVID-19 patients presented to the hospital. These weather parameters were correlated with COVID-19 clinical and laboratory parameters. Results: Our results showed that patients needed admission in days with higher temperatures, higher solar radiation, and less humidity were associated with higher deaths. This association can be linked to the association of these weather parameters with age at diagnosis; higher C-reactive protein (CRP), neutrophil count, white cell count (WCC), aspartate aminotransferase (AST), and alkaline phosphatase (ALP); and lower lymphocyte count, estimated glomerular filtration rate (eGFR), hemoglobin (Hb), Na, and albumin, all of which are considered poor prognostic factors for COVID-19. Conclusion: Our study highlighted the importance of weather-related variables on the dynamics of mortality and clinical outcomes of COVID-19. The hot weather might makes some people, especially those with comorbidities or older ages, develop aggressive inflammation that ends up with complications and mortality.


Assuntos
COVID-19/epidemiologia , Temperatura Alta , Umidade , Luz Solar , Fatores Etários , COVID-19/mortalidade , Comorbidade , Hospitalização , Emirados Árabes Unidos/epidemiologia , Tempo (Meteorologia)
8.
Saudi J Biol Sci ; 28(2): 1445-1450, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33293887

RESUMO

OBJECTIVE: Obesity has been described as a significant independent risk factors of COVID-19. We aimed to study the association between obesity, co-morbidities and clinical outcomes of COVID-19. METHODS: Clinical data from 417 patients were collected retrospectively from the Al Kuwait Hospital, Ministry of Health and Prevention (MOHAP), Dubai, United Arab Emirates, who were admitted between March and June 2020. Patients were divided according to their body mass index (BMI). Various clinical outcomes were examined: presenting symptoms, severity, major co-morbidities, ICU admission, death, ventilation, ARDS, septic shock and laboratory parameters. RESULTS: The average BMI was 29 ± 6.2 kg/m2. BMI alone was not associated with the outcomes examined. However, class II obese patients had more co-morbidities compared to other groups. Hypertension was the most significant co-morbidity associated with obesity. Patients with BMI above the average BMI (29 kg/m2) and presence of underlying co-morbidities showed significant increase in admission to ICU compared to patients below 29 kg/m2 and underlying co-morbidities (21.7% Vs. 9.2%), ARDS development (21.7% Vs. 10.53%), need for ventilation (8.3% Vs. 1.3%), and mortality (10% Vs. 1.3%). CONCLUSIONS: Our data suggests that presence of underlying co-morbidities and high BMI work synergistically to affect the clinical outcomes of COVID-19.

9.
Front Cell Dev Biol ; 9: 641404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791298

RESUMO

Both canonical and non-canonical Wnt signaling pathway alterations have been documented in pulmonary disease pathogenesis and progression; therefore, they can be an attractive target for pharmaceutical management of severe asthma. Wnt/ß-catenin signaling was shown to link early embryonic lung development impairment to later in life asthmatic airway remodeling. Here we explored the changes in Wnt signaling associated with asthma initiation and progression in epithelial and fibroblasts using a comprehensive approach based on in silico analysis and followed by in vitro validation. In summary, the in silico analysis showed that the bronchial epithelium of severe asthmatic patients showed a deranged balance between Wnt enhancer and Wnt inhibitors. A Th2-high phenotype is associated with upregulated Wnt-negative regulators, while inflammatory and neutrophilic severe asthmatics showed higher canonical Wnt signaling member enrichment. Most of these genes are regulators of healthy lung development early in life and, if disturbed, can make people susceptible to developing asthma early in life and prone to developing a severe phenotype. Most of the Wnt members are secreted, and their effect can be in an autocrine fashion on the bronchial epithelium, paracrine on nearby adjacent structural cells like fibroblasts and smooth muscles, or systemic in blood. Our results showed that canonical Wnt signaling is needed for the proper response of cells to proliferative stimuli, which puts cells under stress. Cells in response to this proliferative stress will activate the senescence mechanism, which is also dependent on Wnt signaling. Inhibition of Wnt signaling using FH535 inhibits both proliferation and senescence markers in bronchial fibroblasts compared to DMSO-treated cells. In fibroblasts from asthmatic patients, inhibition of Wnt signaling did not show that effect as the Wnt signaling is deranged besides other pathways that might be non-functional.

10.
Sci Rep ; 11(1): 11873, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088958

RESUMO

In asthma, most of the identified biomarkers pertain to the Th2 phenotype and no known biomarkers have been verified for severe asthmatics. Therefore, identifying biomarkers using the integrative phenotype-genotype approach in severe asthma is needed. The study aims to identify novel biomarkers as genes or pathways representing the core drivers in asthma development, progression to the severe form, resistance to therapy, and tissue remodeling regardless of the sample cells or tissues examined. Comprehensive reanalysis of publicly available transcriptomic data that later was validated in vitro, and locally recruited patients were used to decipher the molecular basis of asthma. Our in-silicoanalysis revealed a total of 10 genes (GPRC5A, SFN, ABCA1, KRT8, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and RRM2) related to cell cycle and proliferation to be deranged in the severe asthmatic bronchial epithelium and fibroblasts compared to their healthy counterparts. In vitro, RT qPCR results showed that (SERPINE1 and RRM2) were upregulated in severe asthmatic bronchial epithelium and fibroblasts, (SFN, ABCA1, TOP2A, SERPINE1, MKI67, and NEK2) were upregulated in asthmatic bronchial epithelium while (GPRC5A and KRT8) were upregulated only in asthmatic bronchial fibroblasts. Furthermore, MKI76, RRM2, and TOP2A were upregulated in Th2 high epithelium while GPRC5A, SFN, ABCA1 were upregulated in the blood of asthmatic patients. SFN, ABCA1 were higher, while MKI67 was lower in severe asthmatic with wheeze compared to nonasthmatics with wheezes. SERPINE1 and GPRC5A were downregulated in the blood of eosinophilic asthmatics, while RRM2 was upregulated in an acute attack of asthma. Validation of the gene expression in PBMC of locally recruited asthma patients showed that SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2 were downregulated in severe uncontrolled asthma. We have identified a set of biologically crucial genes to the homeostasis of the lung and in asthma development and progression. This study can help us further understand the complex interplay between the transcriptomic data and the external factors which may deviate our understanding of asthma heterogeneity.


Assuntos
Asma/sangue , Biomarcadores/metabolismo , Ciclo Celular , Regulação da Expressão Gênica , Leucócitos Mononucleares/citologia , Alergia e Imunologia , Brônquios/patologia , Proliferação de Células , Simulação por Computador , Metilação de DNA , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Células Matadoras Naturais/citologia , Fenótipo , Mucosa Respiratória/metabolismo , Biologia de Sistemas , Linfócitos T/citologia , Células Th2 , Transcriptoma , Regulação para Cima
11.
J Immunol Res ; 2021: 9947370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395637

RESUMO

PURPOSE: Vitamin D (VitD) deficiency is a significant public health concern in many areas around the globe and has been associated with many immune-mediated diseases, including asthma. Severe asthma has been linked to a decreased glucocorticoid receptor (GR) ratio (GR-α/GR-ß ratio), indicating steroid hyporesponsiveness. Using a combination of in silico and in vivo approaches, we aimed to explore the immunomodulatory effect of VitD on asthmatic patients diagnosed with hypovitaminosis D. METHODS: In silico tools were used to identify the regulatory effect of VitD supplementation on GR genes. We measured the expression levels of GR-α and the inactive isoform, GR-ß, in the blood of adult asthmatics diagnosed with hypovitaminosis D before and after VitD supplementation. Moreover, the blood levels of inflammatory cytokines associated with asthma severity were determined. RESULTS: Using an in silico approach, we identified specific genes commonly targeted by VitD as well as corticosteroids, the mainstay of asthma therapy. NR3C1 gene encoding GR was found to be significantly upregulated on Th2 CD4 cells and NK cells. Interestingly, blood expression level of NR3C1 was lower in severe asthmatics compared to nonsevere asthmatics and healthy controls, while the blood level of VitD receptor (VDR) was higher. Upon VitD supplementation of severe asthmatic patients, there was a significant increase in the blood levels of GR-α with no change in GR-ß mRNA expression. VitD supplementation also suppressed the blood levels of IL-17F and IL-4. CONCLUSION: VitD may enhance steroid responsiveness by upregulating the expression of steroid receptor GR-α.


Assuntos
Asma/etiologia , Asma/metabolismo , Regulação da Expressão Gênica , Receptores de Glucocorticoides/genética , Vitamina D/metabolismo , Adulto , Asma/diagnóstico , Biomarcadores , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/metabolismo , Suplementos Nutricionais , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Glucocorticoides/metabolismo , Índice de Gravidade de Doença , Transcriptoma , Vitamina D/sangue , Vitamina D/farmacologia
12.
Front Immunol ; 12: 796094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111161

RESUMO

It is still controversial whether chronic lung inflammation increases the risk for COVID-19. One of the risk factors for acquiring COVID-19 is the level of expression of SARS-CoV-2 entry receptors, ACE2 and TMPRSS2, in lung tissue. It is, however, not clear how lung tissue inflammation affects expression levels of these receptors. We hence aimed to determine the level of SARS-CoV-2 receptors in lung tissue of asthmatic relative to age, gender, and asthma severity, and to investigate the factors regulating that. Therefore, gene expression data sets of well-known asthmatic cohorts (SARP and U-BIOPRED) were used to evaluate the association of ACE2 and TMPRSS2 with age, gender of the asthmatic patients, and also the type of the underlying lung tissue inflammatory cytokines. Notably, ACE2 and to less extent TMPRSS2 expression were upregulated in the lung tissue of asthmatics compared to healthy controls. Although a differential expression of ACE2, but not TMPRSS2 was observed relative to age within the moderate and severe asthma groups, our data suggest that age may not be a key regulatory factor of its expression. The type of tissue inflammation, however, associated significantly with ACE2 and TMPRSS2 expression levels following adjusting with age, gender and oral corticosteroids use of the patient. Type I cytokine (IFN-γ), IL-8, and IL-19 were associated with increased expression, while Type II cytokines (IL-4 and IL-13) with lower expression of ACE2 in lung tissue (airway epithelium and/or lung biopsies) of moderate and severe asthmatic patients. Of note, IL-19 was associated with ACE2 expression while IL-17 was associated with TMPRSS2 expression in sputum of asthmatic subjects. In vitro treatment of bronchial fibroblasts with IL-17 and IL-19 cytokines confirmed the regulatory effect of these cytokines on SARS-CoV-2 entry receptors. Our results suggest that the type of inflammation may regulate ACE2 and TMPRSS2 expression in the lung tissue of asthmatics and may hence affect susceptibility to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Asma/imunologia , COVID-19/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Pulmão/imunologia , SARS-CoV-2/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Serina Endopeptidases/imunologia
13.
Front Immunol ; 11: 560074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304345

RESUMO

Background: Breast cancer heterogeneity is an essential element that plays a role in the therapy response variability and the patient's outcome. This highlights the need for more precise subtyping methods that focus not only on tumor cells but also investigate the profile of stromal cells as well as immune cells. Objectives: To mine publicly available transcriptomic breast cancer datasets and reanalyze their transcriptomic profiling using unsupervised clustering in order to identify novel subsets in molecular subtypes of breast cancer, then explore the stromal and immune cells profile in each subset using bioinformatics and systems immunology approaches. Materials and Methods: Transcriptomic data from 1,084 breast cancer patients obtained from The Cancer Genome Atlas (TCGA) database were extracted and subjected to unsupervised clustering using a recently described, multi-step algorithm called Iterative Clustering and Guide-gene Selection (ICGS). For each cluster, the stromal and immune profile was investigated using ESTIMATE and CIBERSORT analytical tool. Clinical outcomes and differentially expressed genes of the characterized clusters were identified and validated in silico and in vitro in a cohort of 80 breast cancer samples by immunohistochemistry. Results: Seven unique sub-clusters showed distinct molecular and clinical profiles between the well-known breast cancer subtypes. Those unsupervised clusters identified more homogenous subgroups in each of the classical subtypes with a different prognostic profile. Immune profiling of the identified clusters showed that while the classically activated macrophages (M1) are correlated with the more aggressive basal-like breast cancer subtype, the alternatively activated macrophages (M2) showed a higher level of infiltration in luminal A and luminal B subtypes. Indeed, patients with higher levels of M1 expression showed less advanced disease and better patient outcomes presented as prolonged overall survival. Moreover, the M1 high basal-like breast cancer group showed a higher expression of interferon-gamma induced chemokines and guanylate-binding proteins (GBPs) involved in immunity against microbes. Conclusion: Adding immune profiling using transcriptomic data can add precision for diagnosis and prognosis and can cluster patients according to the available modalities of therapy in a more personalized approach.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etiologia , Ativação de Macrófagos/genética , Macrófagos Associados a Tumor/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Ativação de Macrófagos/imunologia , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Células Estromais/metabolismo , Transcriptoma , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Macrófagos Associados a Tumor/imunologia
14.
Front Cardiovasc Med ; 7: 582399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240937

RESUMO

Background: Coronavirus disease 2019 (COVID-19) is a viral respiratory illness caused by the novel coronavirus SARS-CoV-2. The presence of the pre-existing cardiac disease is associated with an increased likelihood of severe clinical course and mortality in patients with COVID-19. Besides, current evidence indicates that a significant number of patients with COVID-19 also exhibit cardiovascular involvement even in the absence of known cardiac risk factors. Therefore, there is a need to understand the underlying mechanisms and genetic predispositions that explain cardiovascular involvement in COVID-19. Objectives: In silico analysis of publicly available datasets to decipher the molecular basis, potential pathways, and the role of the endothelium in the pathogenesis of cardiac and vascular injuries in COVID-19. Materials and Methods: Consistent significant differentially expressed genes (DEGs) shared by endothelium and peripheral immune cells were identified in five microarray transcriptomic profiling datasets in patients with venous thromboembolism "VTE," acute coronary syndrome, heart failure and/or cardiogenic shock (main cardiovascular injuries related to COVID-19) compared to healthy controls. The identified genes were further examined in the publicly available transcriptomic dataset for cell/tissue specificity in lung tissue, in different ethnicities and in SARS-CoV-2 infected vs. mock-infected lung tissues and cardiomyocytes. Results: We identified 36 DEGs in blood and endothelium known to play key roles in endothelium and vascular biology, regulation of cellular response to stress as well as endothelial cell migration. Some of these genes were upregulated significantly in SARS-CoV-2 infected lung tissues. On the other hand, some genes with cardioprotective functions were downregulated in SARS-CoV-2 infected cardiomyocytes. Conclusion: In conclusion, our findings from the analysis of publicly available transcriptomic datasets identified shared core genes pertinent to cardiac and vascular-related injuries and their probable role in genetic susceptibility to cardiovascular injury in patients with COVID-19.

15.
Genes (Basel) ; 11(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365786

RESUMO

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1ß were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.


Assuntos
Artrite Reumatoide/genética , Quimiocina CXCL16/genética , Interferon gama/genética , Interleucina-1beta/genética , Células Matadoras Naturais/metabolismo , Adulto , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/patologia , Biomarcadores/sangue , Feminino , Regulação da Expressão Gênica/genética , Humanos , Células Matadoras Naturais/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/genética
16.
Biology (Basel) ; 9(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784802

RESUMO

Cellular entry of SARS-CoV-2 is thought to occur through the binding of viral spike S1 protein to ACE2. The entry process involves priming of the S protein by TMPRSS2 and ADAM17, which collectively mediate the binding and promote ACE2 shedding. In this study, microarray and RNA-sequencing (RNA-seq) expression data were utilized to profile the expression pattern of ACE2, ADAM17, and TMPRSS2 in type 2 diabetic (T2D) and non-diabetic human pancreatic islets. Our data show that pancreatic islets express all three receptors irrespective of diabetes status. The expression of ACE2 was significantly increased in diabetic/hyperglycemic islets compared to non-diabetic/normoglycemic. Islets from female donors showed higher ACE2 expression compared to males; the expression of ADAM17 and TMPRSS2 was not affected by gender. The expression of the three receptors was statistically similar in young (≤40 years old) versus old (≥60 years old) donors. Obese (BMI > 30) donors have significantly higher expression levels of ADAM17 and TMPRSS2 relative to those from non-obese donors (BMI < 25). TMPRSS2 expression correlated positively with HbA1c and negatively with age, while ADAM17 and TMPRSS2 correlated positively with BMI. The expression of the three receptors was statistically similar in muscle and subcutaneous adipose tissues obtained from diabetic and nondiabetic donors. Lastly, ACE2 expression was higher in sorted pancreatic ß-cell relative to other endocrine cells. In conclusion, ACE2 expression is increased in diabetic human islets. More studies are required to investigate whether variations of ACE2 expression could explain the severity of COVID-19 infection-related symptoms between diabetics and non-diabetic patients.

17.
Cancers (Basel) ; 12(8)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784928

RESUMO

The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.

18.
Front Physiol ; 11: 555039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071815

RESUMO

The ongoing COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Age, smoking, obesity, and chronic diseases such as cardiovascular disease and diabetes have been described as risk factors for severe complications and mortality in COVID-19. Obesity and diabetes are usually associated with dysregulated lipid synthesis and clearance, which can initiate or aggravate pulmonary inflammation and injury. It has been shown that for viral entry into the host cell, SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptors present on the cells. We aimed to characterize how SARS-CoV-2 dysregulates lipid metabolism pathways in the host and the effect of dysregulated lipogenesis on the regulation of ACE2, specifically in obesity. In our study, through the re-analysis of publicly available transcriptomic data, we first found that lung epithelial cells infected with SARS-CoV-2 showed upregulation of genes associated with lipid metabolism, including the SOC3 gene, which is involved in the regulation of inflammation and inhibition of leptin signaling. This is of interest as viruses may hijack host lipid metabolism to allow the completion of their viral replication cycles. Furthermore, a dataset using a mouse model of diet-induced obesity showed a significant increase in Ace2 expression in the lungs, which negatively correlated with the expression of genes that code for sterol response element-binding proteins 1 and 2 (SREBP). Suppression of Srebp1 showed a significant increase in Ace2 expression in the lung. Moreover, ACE2 expression in human subcutaneous adipose tissue can be regulated through changes in diet. Validation of the in silico data revealed a higher expression of ACE2, TMPRSS2 and SREBP1 in vitro in lung epithelial cells from obese subjects compared to non-obese subjects. To our knowledge this is the first study to show upregulation of ACE2 and TMPRSS2 in obesity. In silico and in vitro results suggest that the dysregulated lipogenesis and the subsequently high ACE2 expression in obese patients might be the mechanism underlying the increased risk for severe complications in those patients when infected by SARS-CoV-2.

19.
Medicine (Baltimore) ; 99(19): e20191, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32384514

RESUMO

Patients with renal cell carcinoma (RCC), the most common malignant renal epithelial tumor, usually present with advanced disease and unpredicted clinical behavior. The receptor tyrosine kinase, ephrin type-A receptor 2 (EphA2) was found to be overexpressed in several malignancies and its expression was found to be associated with poor prognostic features.Our study is an observational study with the aim of investigating the prognostic value of EphA2 in RCC patients and its association with clinicopathological parameters as well as Ki-67 expression, which is a well-known proliferative and prognostic marker in RCC.EphA2 and Ki-67 immunohistochemical staining was performed on whole sections representative of 50 patients diagnosed with primary RCC from 2013 to 2018. In addition, the association between EphA2 mRNA expression and clinicopathological parameters as well as the patients' outcome was also evaluated using two large publicly available databases.Our results showed a significant association between EphA2 immunohistochemical expression and tumor size, nuclear grade, tumor stage, patients' outcome and Ki-67 expression (P < .05 for all). The same trend was also observed with EphA2 mRNA expression using larger patients' cohorts in 2 publicly available databases. Notably, EphA2 protein expression showed higher levels of co-expression with the proliferative marker Ki-67.Our results suggested that higher expression of EphA2 and Ki-67 in tumor tissues predicts a locally aggressive behaviour and poor outcome of patients with RCC. Moreover, our results give a rationale for the potential benefits of using novel therapeutic strategies with the aim of targeting EphA2 receptor in RCC patients that might help in improving their outcome.


Assuntos
Carcinoma de Células Renais/patologia , Antígeno Ki-67/biossíntese , Neoplasias Renais/patologia , Receptor EphA2/biossíntese , Adulto , Idoso , Biomarcadores Tumorais , Carcinoma de Células Renais/mortalidade , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Renais/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro , Carga Tumoral
20.
Front Immunol ; 11: 1372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595654

RESUMO

Current guidelines for COVID-19 management recommend the utilization of various repurposed drugs. Despite ongoing research toward the development of a vaccine against SARS-CoV-2, such a vaccine will not be available in time to contribute to the containment of the ongoing pandemic. Therefore, there is an urgent need to develop a framework for the rapid identification of novel targets for diagnostic and therapeutic interventions. We analyzed publicly available transcriptomic datasets of SARS-CoV infected humans and mammals to identify consistent differentially expressed genes then validated in SARS-CoV-2 infected epithelial cells transcriptomic datasets. Comprehensive toxicogenomic analysis of the identified genes to identify possible interactions with clinically proven drugs was carried out. We identified IFITM3 as an early upregulated gene, and valproic acid was found to enhance its mRNA expression as well as induce its antiviral action. These findings indicate that analysis of publicly available transcriptomic and toxicogenomic data represents a rapid approach for the identification of novel targets and molecules that can modify the action of such targets during the early phases of emerging infections like COVID-19.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Proteínas de Ligação a RNA/genética , 2',5'-Oligoadenilato Sintetase/genética , Animais , Antivirais/farmacologia , Betacoronavirus/fisiologia , COVID-19 , Modelos Animais de Doenças , Furões , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata , Pulmão , Macaca fascicularis , Camundongos , Proteínas de Resistência a Myxovirus/genética , Pandemias , SARS-CoV-2 , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacos , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa