Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35021222

RESUMO

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Assuntos
Magnoliopsida , Metiltransferases , Proteínas de Plantas , Magnoliopsida/classificação , Magnoliopsida/enzimologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Especificidade por Substrato
2.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681819

RESUMO

Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Radiação não Ionizante , Espécies Reativas de Oxigênio/efeitos da radiação , Animais , Protocolos Antineoplásicos , Humanos , Medicina Regenerativa
3.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091861

RESUMO

Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa