Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Photochem Photobiol Sci ; 20(5): 699-714, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33945145

RESUMO

Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/metabolismo , Humanos , Raios Infravermelhos , Células-Tronco Mesenquimais/patologia
2.
Lasers Med Sci ; 31(4): 789-809, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26964800

RESUMO

Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement methods and all ten key parameters: wavelength, power, irradiation time, beam area (at the skin or culture surface; this is not necessarily the same size as the aperture), radiant energy, radiant exposure, pulse parameters, number of treatments, interval between treatments and anatomical location. Inclusion of these parameters will improve the information available to compare and contrast study outcomes and improve repeatability, reliability of studies.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Humanos , Doses de Radiação , Radiometria , Reprodutibilidade dos Testes , Pele/efeitos da radiação
3.
Biomater Investig Dent ; 11: 40308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645925

RESUMO

Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4-6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390-405 nm; intermediate: 410-450 nm; and long: 450-480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.

4.
Dent Mater ; 40(9): 1452-1463, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945741

RESUMO

OBJECTIVE: This study investigated the influence of photoinitiator types on degree of conversion (DC), rate of polymerization (RP), flexural strength (FS), flexural modulus (FM), and light transmittance (LT) of filled and unfilled light-curable resin cements through different thicknesses and shades of lithium disilicate ceramics. METHODS: Lithium disilicate ceramic discs (IPS Emax Press, background [0.0], 0.5, 1.0, 2.0, 3.0, and 4.0 mm, shades A1 and BL3) were prepared. Experimental resin-based cements [TEGDMA/BisGMA (50/50 mass%)] were prepared using either camphorquinone (CQ)/amine (0.44/1.85 mol%) or TPO (0.44 mol%)], and a micro and nanofiller loads of nil (unfilled); 40/10 mass%; and 50/10 mass%). Resin cements (0.2 mm thick) were placed on the lower surface of the ceramic specimens and light-activated for 30 s from the upper surface using a Bluephase Style curing light (exitance at tip: 1236 mW/cm2 ± 1.20). LT and distribution of irradiance through the ceramics were measured using a UV-vis spectrometer and a beam profile camera, respectively (n = 3). The DC and RP were measured in real-time using mid infrared spectroscopy in attenuated total reflectance (ATR) mode (n = 3). FS and FM were measured using a universal testing machine (n = 5). Statistical analyses were performed on LT, DC, RP, FS, and FM data using a general linear model, and supplementary ANOVA and post hoc Tukey multiple comparison test were also performed (α = .05). RESULTS: Thicknesses, shades, photoinitiator type, and fillers load significantly influenced the optical and mechanical characteristics of the resin-based materials (p < 0.05). The BL3 shade ceramic provided higher values of DC, RP, FS, FM, and LT compared with the A1 shade (p < 0.05). Increasing ceramic thickness decreased the properties of the resin-based materials (p < 0.05). Generally, TPO improved mechanical properties of the resin cement compared with CQ (p < 0.05). SIGNIFICANCE: The luting process of indirect restorations may be improved by using high molar absorptivity, more reactive, and more efficient photoinitiators such as TPO, as opposed to conventional CQ. The use of such initiator may allow the placement of thicker and more opaque indirect restorations.


Assuntos
Cerâmica , Porcelana Dentária , Resistência à Flexão , Cura Luminosa de Adesivos Dentários , Teste de Materiais , Polimerização , Cimentos de Resina , Cimentos de Resina/química , Porcelana Dentária/química , Cerâmica/química , Ácidos Polimetacrílicos/química , Polietilenoglicóis/química , Fotoiniciadores Dentários/química , Bis-Fenol A-Glicidil Metacrilato/química , Propriedades de Superfície , Terpenos/química , Cânfora/análogos & derivados
5.
Dent Mater ; 40(9): 1400-1408, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908961

RESUMO

OBJECTIVES: The study aimed to assess the impact of diphenyliodonium hexafluorophosphate (DPI) on the physicochemical properties of experimental resin composites (ECRs) featuring reduced concentrations of camphorquinone (CQ)/amine. METHODS: Five concentrations of CQ (0.125, 0.25, 0.5, 0.75, and 1 mol%) with dimethylaminoethyl amine benzoate (EDAB) in a 1:2 mol% ratio (CQ:EDAB) were incorporated into a 50:50 mass% monomer blend of bisphenol glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). An additional 5 groups with the same CQ:EDAB concentrations had 0.5 mol% DPI added. Each resin group contained 60 wt% of 0.7 µm barium-alumino-silicate glass. Light transmission (n = 3), real-time degree of polymerization (n = 3), temperature change during polymerization (n = 5), polymerization shrinkage strain (n = 3), flexural strength, and modulus (n = 12), as well as water sorption and solubility (n = 5), were evaluated. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α = 0.05). RESULTS: Light transmission was reduced in groups containing 0.125 and 0.25 mol% of CQ without DPI. DPI increased temperature, degree and rate of polymerization, despite the reduction in CQ/amine concentration. Additionally, there was an increase in polymerization shrinkage strain, flexural strength and modulus, and a reduction in water sorption and solubility in ECRs with DPI, even with lower concentrations of CQ/EDAB. SIGNIFICANCE: DPI improved the assessed properties of composites across various concentrations of CQ/EDAB, showing the benefit of reducing the quantity of CQ used without compromising the properties and curing of the resin composites.


Assuntos
Resinas Compostas , Teste de Materiais , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos , Terpenos , Resinas Compostas/química , Terpenos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Bis-Fenol A-Glicidil Metacrilato/química , Propriedades de Superfície , Oniocompostos/química , Poliuretanos/química , Resinas Acrílicas , Compostos de Bifenilo , Cânfora/análogos & derivados
6.
PLoS One ; 16(1): e0245830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33513153

RESUMO

This study investigated the accuracy of sixteen models of commercial dental radiometers (DR) in measuring the output of thirty-eight LED light curing units (LCUs) compared with a 'gold standard' laboratory-grade spectrometer integrating-sphere (IS) assembly. Nineteen Type I (fiber-bundle light guide) and nineteen Type II (light source in head) LED LCUs were tested, some using different output modes and light guides, resulting in 61 test subsets per radiometer. Gold standard (GS) output measurements (n = 3) were taken using the IS and confirmed with two types of laboratory-grade power meter (PowerMax-Pro 150 HD and PM10-19C; Coherent). One DR (Bluephase Meter II, Ivoclar; BM II) allowed power (mW) as well as irradiance (mW/cm2) recordings. Irradiance readings (n = 3) for each DR/LCU were compared with the IS derived irradiance. Individual LCU irradiance values were normalized against IS data. The GS method yielded reproducible data with a 0.4% pooled coefficient of variation for the LCUs. Mean power values ranged from 0.19 W to 2.40 W. Overall power values for the laboratory-grade power meters were within 5% of GS values. Individual LCU/DR normalized irradiance values ranged from 7% to 535% of the GS; an order of magnitude greater than previous reports. BM II was the only radiometer to average within 20% of normalized pooled GS irradiance values, whereas other radiometers differed by up to 85%. Ten radiometers failed to provide any reading for 1 LCU. When tested with the PowerMax-Pro in high speed (20 kHz) mode, eight LCUs demonstrated pulsing outputs undetectable at the standard (10 Hz) data acquisition rate. Sufficient light exposure is critical for the successful curing of dental resin-based materials. Substantial discrepancies may occur between actual and estimated radiometric data using current DRs. More accurate DRs need to be developed. Manufacturers' accuracy claims for DRs should specify compatible LCUs and testing parameters.


Assuntos
Lâmpadas de Polimerização Dentária/normas , Radiometria/instrumentação , Radiometria/normas , Reprodutibilidade dos Testes
7.
J Photochem Photobiol B ; 215: 112123, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33454542

RESUMO

The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.


Assuntos
Dentina/efeitos da radiação , Desinfecção/métodos , Luz , Adulto , Cor , Dentina/microbiologia , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos da radiação , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos da radiação , Adulto Jovem
8.
Dent Mater ; 34(5): 695-710, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29549967

RESUMO

Spatial and temporal control is a key advantage for placement and rapid setting of light-activated resin composites. Conventionally, placement of multiple thin layers (<2mm) reduces the effect of light attenuation through highly filled and pigmented materials to increase polymerisation at the base of the restoration. However, and although light curing greater than 2mm thick layers is not an entirely new phenomenon, the desire amongst dental practitioners for even more rapid processing in deep cavities has led to the growing acceptance of so-called "bulk fill" (4-6mm thick) resin composites that are irradiated for 10-20s in daily clinical practice. The change in light transmission and attenuation during photopolymerisation are complex and related to path length, absorption properties of the photoinitiator and pigment, optical properties of the resin and filler and filler morphology. Understanding how light is transmitted through depth is therefore critical for ensuring optimal material properties at the base of thick increments. This article will briefly highlight the advent of current commercial materials that rationalise bulk filling techniques in dentistry, the relationship between light transmission and polymerisation and how optimal curing depths might be achieved.


Assuntos
Resinas Compostas/química , Resinas Compostas/efeitos da radiação , Cura Luminosa de Adesivos Dentários , Processos Fotoquímicos , Lâmpadas de Polimerização Dentária , Dureza , Teste de Materiais , Polimerização , Propriedades de Superfície
9.
J Biophotonics ; 10(11): 1514-1525, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28164460

RESUMO

Lasers/LEDs demonstrate therapeutic effects for a range of biomedical applications. However, a consensus on effective light irradiation parameters and efficient and reliable measurement techniques remain limited. The objective here is to develop, characterise and demonstrate the application of LED arrays in order to progress and improve the effectiveness and accuracy of in vitro photobiomodulation studies. 96-well plate format LED arrays (400-850 nm) were developed and characterised to accurately assess irradiance delivery to cell cultures. Human dental pulp cells (DPCs) were irradiated (3.5-142 mW/cm2 : 15-120 s) and the biological responses were assessed using MTT assays. Array calibration was confirmed using a range of optical and analytical techniques. Multivariate analysis of variance revealed biological responses were dependent on wavelength, exposure time and the post-exposure assay time (P < 0.05). Increased MTT asbsorbance was measured 24 h post-irradiation for 30 s exposures of 3.5 mW/cm2 at 470, 527, 631, 655, 680, 777, 798 and 826 nm with distinct peaks at 631 nm and 798 nm (P < 0.05). Similar wavelengths were also effective at higher irradiances (48-142 mW/cm2 ). LED arrays and high throughput assays provide a robust and reliable platform to rapidly identify irradiation parameters which is both time- and cost-effective. These arrrays are applicable in photobiomodulation, photodynamic therapy and other photobiomedical research.


Assuntos
Equipamentos e Provisões Elétricas , Fototerapia/instrumentação
10.
Dent Mater ; 29(2): 139-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23199807

RESUMO

OBJECTIVES: This work aims to review the key factors affecting the polymerization efficiency of light-activated resin-based composites. The different properties and methods used to evaluate polymerization efficiency will also be critically appraised with focus on the developments in dental photopolymer technology and how recent advances have attempted to improve the shortcomings of contemporary resin composites. METHODS: Apart from the classical literature on the subject, the review focused in particular on papers published since 2009. The literature research was performed in Scopus with the terms "dental resin OR dimethacrylate". The list was screened and all papers relevant to the objectives of this work were included. RESULTS: Though new monomer technologies have been developed and some of them already introduced to the dental market, dimethacrylate-based composites still currently represent the vast majority of commercially available materials for direct restoration. The photopolymerization of resin-based composites has been the subject of numerous publications, which have highlighted the major impact of the setting process on material properties and quality of the final restoration. Many factors affect the polymerization efficiency, be they intrinsic; photoinitiator type and concentration, viscosity (co-monomer composition and ratio, filler content) and optical properties, or extrinsic; light type and spectrum, irradiation parameters (radiant energy, time and irradiance), curing modes, temperature and light guide tip positioning. SIGNIFICANCE: : This review further highlights the apparent need for a more informative approach by manufacturers to relay appropriate information in order for dentists to optimize material properties of resin composites used in daily practice.


Assuntos
Resinas Compostas/química , Cura Luminosa de Adesivos Dentários , Metacrilatos/química , Fotoiniciadores Dentários/química , Polimerização , Teste de Materiais , Vitrificação/efeitos da radiação
11.
Dent Mater ; 28(8): 831-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22578661

RESUMO

OBJECTIVES: The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. METHODS: Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. RESULTS: GLM three-way analysis of variance revealed significant differences (p<0.001), where photoinitiator concentration (df = 2; F = 618.83)>photoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (p<0.001). Despite TPO-based resins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. SIGNIFICANCE: Although some photoinitiators such as TPO may be a more esthetic alternative to CQ, they may actually cause significant color contamination when used in high concentrations and therefore manufacturers should limit its concentration in order to improve its esthetic quality.


Assuntos
Resinas Compostas , Cura Luminosa de Adesivos Dentários , Fotoiniciadores Dentários , Absorção , Antioxidantes/química , Hidroxitolueno Butilado/química , Cor , Colorimetria , Estética Dentária , Teste de Materiais , Fosfinas/química , Processos Fotoquímicos , Fotoiniciadores Dentários/química , Terpenos/química
12.
Dent Mater ; 28(11): 1154-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22947442

RESUMO

OBJECTIVES: To test the influence of specimen dimensions on light transmission and shrinkage strain properties of curing dental resins. MATERIALS AND METHODS: Photocurable resin specimens (Bis-GMA/TEGDMA) with aspect ratios (AR) of 2 (4mm×2mm); 4 (4mm×1mm and 8mm×2mm); 8 (8mm×1mm); 12 (AR: 12mm×1mm); and 24 (12mm×0.5mm) were light cured. Light transmission and shrinkage-strain data were recorded throughout, and upper and lower surface hardness measurements were performed following cure. RESULTS: Light transmission was significantly affected by the specimen aspect ratio even at similar thicknesses (p<0.05). By comparing light transmission through a negative control resin without photoinitiator, the lowest AR specimens showed a relative increase in transmission above 100% throughout curing, which was caused by specimen constraint. The extent of lower surface cure (as assessed by increasing hardness) was principally affected by cavity height and decreased for thicker specimens (p<0.05). Only the 2mm thick specimens showed a significantly greater lower to upper hardness ratio with increasing cavity diameter (p<0.05). The highest AR specimen showed the greatest lower to upper hardness percentage (p<0.05), and was expected since this AR was obtained by reducing the sample thickness to 0.5mm. Generally, total shrinkage strain increased and shrinkage strain per unit mass decreased with increasing AR. SIGNIFICANCE: Specimen constraint in low AR cavities may compromise light transmission as unexpected light intensity variations may occur for low configuration factors, which ultimately affect polymer conversion of light-cured resin-based restorations through depth.


Assuntos
Resinas Compostas/química , Cura Luminosa de Adesivos Dentários , Adaptação Marginal Dentária , Análise do Estresse Dentário , Dureza , Teste de Materiais , Polimerização , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa