Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 2(2): fcaa160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33977260

RESUMO

We studied the feasibility, safety, tolerability and pharmacokinetics of intracerebroventricular delivery of recombinant human vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. In this phase I study in patients with amyotrophic lateral sclerosis, the study drug was delivered using an implantable programmable pump connected to a catheter inserted in the frontal horn of the lateral cerebral ventricle. A first cohort received open label vascular endothelial growth factor (0.2, 0.8 and 2 µg/day), a second cohort received placebo, 0.8 or 2 µg/day of study dug. After the 3-month study period, all patients could participate in an open label extension study. In total, 18 patients with amyotrophic lateral sclerosis, seen at the University Hospitals in Leuven were included. The surgical procedure was well tolerated in most patients. One patient had transient postoperative seizures, due to an ischemic lesion along the catheter tract. The first 3-month study period was completed by 15/18 patients. Administration of 2 µg/day vascular endothelial growth factor resulted in sustained detectable levels in cerebrospinal fluid. A pulmonary embolus occurred in 3 patients, in 1 patient in the first 3-month study, and in 2 patients during the open label extension study. The study drug was well tolerated in the other patients, for up to 6 years in the open label extension study. Our study shows that intracerebroventricular administration of 2 µg/day of vascular endothelial growth factor to patients with amyotrophic lateral sclerosis is feasible, results in detectable cerebrospinal fluid levels and is well tolerated in most patients. The most common serious adverse event was a pulmonary embolus.

2.
J Clin Invest ; 125(3): 1339-46, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25689258

RESUMO

BACKGROUND. Recombinant human PDGF-BB (rhPDGF-BB) reduces Parkinsonian symptoms and increases dopamine transporter (DAT) binding in several animal models of Parkinson's disease (PD). Effects of rhPDGF-BB are the result of proliferation of ventricular wall progenitor cells and reversed by blocking mitosis. Based on these restorative effects, we assessed the safety and tolerability of intracerebroventricular (i.c.v.) rhPDGF-BB administration in individuals with PD. METHODS. We conducted a double-blind, randomized, placebo-controlled phase I/IIa study at two clinical centers in Sweden. Twelve patients with moderate PD received rhPDGF-BB via an implanted drug infusion pump and an investigational i.c.v. catheter. Patients were assigned to a dose cohort (0.2, 1.5, or 5 µg rhPDGF-BB per day) and then randomized to active treatment or placebo (3:1) for a 12-day treatment period. The primary objective was to assess safety and tolerability of i.c.v.-delivered rhPDGF-BB. Secondary outcome assessments included several clinical rating scales and changes in DAT binding. The follow-up period was 85 days. RESULTS. All patients completed the study. There were no unresolved adverse events. Serious adverse events occurred in three patients; however, these were unrelated to rhPDGF-BB administration. Secondary outcome parameters did not show dose-dependent changes in clinical rating scales, but there was a positive effect on DAT binding in the right putamen. CONCLUSION. At all doses tested, i.c.v. administration of rhPDGF-BB was well tolerated. Results support further clinical development of rhPDGF-BB for patients with PD. TRIAL REGISTRATION. Clinical Trials.gov NCT00866502. FUNDING. Newron Sweden AB (former NeuroNova AB) and Swedish Governmental Agency for Innovation Systems (VINNOVA).


Assuntos
Antiparkinsonianos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-sis/administração & dosagem , Idoso , Antiparkinsonianos/efeitos adversos , Becaplermina , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Método Duplo-Cego , Humanos , Injeções Intraventriculares , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/efeitos adversos , Putamen/efeitos dos fármacos , Putamen/metabolismo , Resultado do Tratamento
3.
PLoS One ; 7(4): e35577, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523602

RESUMO

Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Actinas/biossíntese , Adulto , Diferenciação Celular , Linhagem da Célula , Ventrículos Cerebrais/citologia , Células Clonais , Humanos , Neocórtex/citologia , Pericitos/citologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese
4.
J Parkinsons Dis ; 1(1): 49-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23939256

RESUMO

Parkinson's disease is characterized by motor deficits caused by loss of midbrain dopaminergic neurons. Neurotrophic factors and cell transplantation have partially restored function in models of Parkinson's disease, but have had limited effects in humans. Here we show that intracerebroventricular administration of platelet-derived growth factor-BB can offer an alternative strategy to restore function in Parkinson's disease; In animal models of nigrostriatal injury, a two weeks treatment with platelet-derived growth factor-BB resulted in long-lasting restoration of striatal dopamine transporter binding sites and expression of nigral tyrosine hydroxylase. It also normalized amphetamine-induced rotational behavior in 6-hydroxydopamine lesioned rats. Platelet-derived growth factor-BB promoted proliferation of neural progenitor cells in the subventricular zone. The effects on dopaminergic neurons and functional recovery could be blocked by co-infusion with a proliferation inhibitor, indicating a link between the proliferative and anti-parkinsonian effects. Based on the current data, we consider platelet-derived growth factor-BB a clinical candidate drug for treatment of Parkinson's disease.


Assuntos
Indutores da Angiogênese/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Becaplermina , Proliferação de Células/efeitos dos fármacos , Citarabina/uso terapêutico , Modelos Animais de Doenças , Esquema de Medicação , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotoxinas/toxicidade , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa