Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L726-L738, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565360

RESUMO

Pulmonary arterial hypertension (PAH) refers to a set of heterogeneous vascular diseases defined by elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), leading to right ventricular (RV) remodeling and often death. Early increases in pulmonary artery stiffness in PAH drive pathogenic alterations of pulmonary arterial endothelial cells (PAECs), leading to vascular remodeling. Dysregulation of microRNAs can drive PAEC dysfunction. However, the role of vascular stiffness in regulating pathogenic microRNAs in PAH is incompletely understood. Here, we demonstrated that extracellular matrix (ECM) stiffening downregulated miR-7 levels in PAECs. The RNA-binding protein quaking (QKI) has been implicated in the biogenesis of miR-7. Correspondingly, we found that ECM stiffness upregulated QKI, and QKI knockdown led to increased miR-7. Downstream of the QKI-miR-7 axis, the serine and arginine-rich splicing factor 1 (SRSF1) was identified as a direct target of miR-7. Correspondingly, SRSF1 was reciprocally upregulated in PAECs exposed to stiff ECM and was negatively correlated with miR-7. Decreased miR-7 and increased QKI and SRSF1 were observed in lungs from patients with PAH and PAH rats exposed to SU5416/hypoxia. Lastly, miR-7 upregulation inhibited human PAEC migration, whereas forced SRSF1 expression reversed this phenotype, proving that miR-7 depended upon SRSF1 to control migration. In aggregate, these results define the QKI-miR-7-SRSF1 axis as a mechanosensitive mechanism linking pulmonary arterial vascular stiffness to pathogenic endothelial function. These findings emphasize implications relevant to PAH and suggest the potential benefit of developing therapies that target this miRNA-dependent axis in PAH.


Assuntos
Endotélio Vascular/patologia , Matriz Extracelular/patologia , MicroRNAs/genética , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Fatores de Processamento de Serina-Arginina/genética , Transdução de Sinais , Remodelação Vascular
3.
J Fungi (Basel) ; 9(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983451

RESUMO

Phaeohyphomycosis comprises a variety of infections caused by pigmented fungi. Solid organ transplant (SOT) recipients are particularly at risk of invasive infections due to their prolonged immunosuppression. Here, we describe three cases of phaeohyphomycosis in SOT recipients who were successfully treated with surgical excision and/or antifungal therapy. We additionally carried out a narrative review of the literature on phaeohyphomycosis in 94 SOT recipients from 66 published studies describing 40 different species of fungi. The most reported fungus was Alternaria (21%). The median time from transplant to diagnosis was 18 months (IQR 8.25-48), and kidney transplants were the most reported. Antifungal regimens were not homogeneous, though there was a prevalence of itraconazole- and voriconazole-based treatments. Clinical outcomes included recovery in 81% and death in 5% of infected SOT recipients. Susceptibility testing was done in 26.6% of the cases, with heterogeneous results due to the variety of species isolated. While the wide diversity of dematiaceous fungi and their host range make it difficult to offer a uniform approach for phaeohyphomycosis, an early diagnosis and therapy are critical in preventing the dissemination of disease in the immunocompromised host.

4.
J Am Heart Assoc ; 12(7): e027894, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36974749

RESUMO

Background Pulmonary arterial hypertension (PAH) is a complex, fatal disease where disease severity has been associated with the single nucleotide polymorphism (SNP) rs2856830, located near the human leukocyte antigen DPA1 (HLA-DPA1) gene. We aimed to define the genetic architecture of functional variants associated with PAH disease severity by identifying allele-specific binding transcription factors and downstream targets that control endothelial pathophenotypes and PAH. Methods and Results Electrophoretic mobility shift assays of oligonucleotides containing SNP rs2856830 and 8 SNPs in linkage disequilibrium revealed functional SNPs via allele-imbalanced binding to human pulmonary arterial endothelial cell nuclear proteins. DNA pulldown proteomics identified SNP-binding proteins. SNP genotyping and clinical correlation analysis were performed in 84 patients with PAH at University of Pittsburgh Medical Center and in 679 patients with PAH in the All of Us database. SNP rs9277336 was identified as a functional SNP in linkage disequilibrium (r2>0.8) defined by rs2856830, and the minor allele was associated with decreased hospitalizations and improved cardiac output in patients with PAH, an index of disease severity. SNP pulldown proteomics showed allele-specific binding of nuclear ACTN4 (alpha actinin 4) protein to rs9277336 minor allele. Both ACTN4 and HLA-DPA1 were downregulated in pulmonary endothelium in human patients and rodent models of PAH. Via transcriptomic and phenotypic analyses, knockdown of HLA-DPA1 phenocopied knockdown of ACTN4, both similarly controlling cell structure pathways, immune pathways, and endothelial dysfunction. Conclusions We defined the pathogenic activity of functional SNP rs9277336, entailing the allele-specific binding of ACTN4 and controlling expression of the neighboring HLA-DPA1 gene. Through inflammatory or genetic means, downregulation of this ACTN4-HLA-DPA1 regulatory axis promotes endothelial pathophenotypes, providing a mechanistic explanation for the association between this SNP and PAH outcomes.


Assuntos
Actinina , Cadeias beta de HLA-DP , Hipertensão Arterial Pulmonar , Humanos , Actinina/genética , Endotélio , Predisposição Genética para Doença , Cadeias beta de HLA-DP/genética , Polimorfismo de Nucleotídeo Único
5.
Fertil Steril ; 115(1): 17-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308855

RESUMO

In today's changing health care landscape, it has become necessary that providers have a fundamental understanding of practice management as pertinent to the care they provide. The reproductive endocrinology and infertility (REI) practice is a uniquely complex setting with many component parts, necessitating frequent assessment and collaboration to provide safe, quality, and cost-effective care. In this review, we aim to describe the basics of medical practice management, divided into six sections: practice models; operations; patient safety; patient experience; employee recruitment; development, and satisfaction; and technology. These topics will be presented with a focus on the application of these principles to the REI practice.


Assuntos
Endocrinologia , Gerenciamento da Prática Profissional , Medicina de Precisão , Medicina Reprodutiva/organização & administração , Endocrinologia/economia , Endocrinologia/organização & administração , Endocrinologia/normas , Humanos , Infertilidade/economia , Infertilidade/terapia , Modelos Organizacionais , Gerenciamento da Prática Profissional/economia , Gerenciamento da Prática Profissional/organização & administração , Gerenciamento da Prática Profissional/normas , Padrões de Prática Médica/economia , Padrões de Prática Médica/organização & administração , Padrões de Prática Médica/normas , Medicina de Precisão/economia , Medicina de Precisão/métodos , Medicina de Precisão/normas , Medicina Reprodutiva/economia , Medicina Reprodutiva/normas
6.
Clin Transl Radiat Oncol ; 28: 129-132, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33981866

RESUMO

Fanconi Anemia (FA) is a rare inherited autosomal recessive disease that results in impaired double stranded DNA repair. This leads to both increased susceptibility to various cancers, as well as hypersensitivity to radiotherapy and systemic therapy; thus, increasing the complexity of oncological treatment paradigm. Here, we present an FA patient who initially developed invasive breast cancer for which she received breast conserving treatment with no significant treatment related toxicity. This was followed by a diagnosis of high-grade ductal carcinoma-in-situ in the contralateral breast, which was managed successfully by surgery and meticulously planned adjuvant radiotherapy, with no treatment interruptions.

7.
Circ Genom Precis Med ; 13(5): 396-405, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32841044

RESUMO

BACKGROUND: Pathogenic variants in MYBPC3, encoding cardiac MyBP-C (myosin binding protein C), are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped hypertrophic cardiomyopathy cohorts have precluded detailed genotype-phenotype correlations. METHODS: Patients with hypertrophic cardiomyopathy and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry. Variant types and locations were analyzed, morphological severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, left ventricular assist device/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. RESULTS: Among 4756 genotyped patients with hypertrophic cardiomyopathy in Sarcomeric Human Cardiomyopathy Registry, 1316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or nontruncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5'-3' quartiles or by founder variant subgroup). Nontruncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, P<0.001 versus Genome Aggregation Database common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ≈90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. CONCLUSIONS: Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Nontruncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss of function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating versus nontruncating variants.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Adolescente , Adulto , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Miofibrilas/metabolismo , Miofibrilas/patologia , Fenótipo , Polimorfismo Genético , Sistema de Registros , Índice de Gravidade de Doença , Análise Espacial , Adulto Jovem
8.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31487266

RESUMO

Nitric oxide regulates BP by binding the reduced heme iron (Fe2+) in soluble guanylyl cyclase (sGC) and relaxing vascular smooth muscle cells (SMCs). We previously showed that sGC heme iron reduction (Fe3+ → Fe2+) is modulated by cytochrome b5 reductase 3 (CYB5R3). However, the in vivo role of SMC CYB5R3 in BP regulation remains elusive. Here, we generated conditional smooth muscle cell-specific Cyb5r3 KO mice (SMC CYB5R3-KO) to test if SMC CYB5R3 loss affects systemic BP in normotension and hypertension via regulation of the sGC redox state. SMC CYB5R3-KO mice exhibited a 5.84-mmHg increase in BP and impaired acetylcholine-induced vasodilation in mesenteric arteries compared with controls. To drive sGC oxidation and elevate BP, we infused mice with angiotensin II. We found that SMC CYB5R3-KO mice exhibited a 14.75-mmHg BP increase, and mesenteric arteries had diminished nitric oxide-dependent vasodilation but increased responsiveness to sGC heme-independent activator BAY 58-2667 over controls. Furthermore, acute injection of BAY 58-2667 in angiotensin II-treated SMC CYB5R3-KO mice showed greater BP reduction compared with controls. Together, these data provide the first in vivo evidence to our knowledge that SMC CYB5R3 is an sGC heme reductase in resistance arteries and provides resilience against systemic hypertension development.


Assuntos
Angiotensina II/metabolismo , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Heme/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Benzoatos , Pressão Sanguínea , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oxirredução , Transcriptoma , Vasodilatação
9.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875314

RESUMO

Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Animais Recém-Nascidos , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Haploinsuficiência , Humanos , Miocárdio/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Proteostase/genética , Ratos , Sarcômeros/patologia , Septo Interventricular/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa