RESUMO
PURPOSE: Genetic testing provides great support to validate the clinical diagnosis of inborn errors of immunity (IEI). However, the high cost and advanced technology make these tests inaccessible to a large proportion of patients in low-income countries. In the present study, we aim to evaluate the Moroccan experience in genetic testing and to report the main molecular features and difficulties encountered in genetic diagnosis. METHODS: We performed a multi-center retrospective analysis of all patients with a molecular diagnosis and registered in the national registry between 2010 and 2022. To estimate the impact of the newly identified mutations, we calculated the Combined Annotation Dependent Depletion (CADD) score and the mutation significance cutoff (MSC) for each variant. RESULTS: A total of 216 (29%) patients received a genetic diagnosis out of 742 patients with IEI included in the registry. All genetic tests were performed in the context of thesis projects (40%) or international collaborations (60%). A set of 55 genetic defects were identified, including 7 newly reported: SNORA31, TBX21, SPPL2A, TYK2, RLTPR, ZNF341, and STAT2 GOF. Genetic diagnoses were more frequent in the defects of innate and intrinsic immunity with a percentage of 78%, while antibody deficiencies had a lower frequency with a percentage of 17.5%. Only one genetic diagnosis has been made in the complement deficiency group. The most commonly used molecular techniques were Sanger sequencing (37%) followed by targeted gene sequencing (31%). CONCLUSION: The thesis projects and collaborations were beneficial as they allowed us to provide a definitive genetic diagnosis to 29% of the patients and to contribute to the identification of new genetic defects and mutations. These results offer insight into the progress made in genetic diagnoses of IEI in Morocco, which would provide a baseline for improving the clinical management of patients with IEI.