Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(23): 4608-4620, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813847

RESUMO

Responsive hollow microgels are a fascinating class of soft model systems at the crossover between polymer capsules and microgels. The presence of the cavity makes them promising materials for encapsulation and controlled release applications but also confers them an additional softness that is reflected by their peculiar behaviour in bulk and at interfaces. Their responsivity to external stimuli, such as temperature, pH, and ionic strength, can be designed from their synthesis conditions and the choice of functional moieties. So far most studies have focused on "small" hollow microgels that were mostly studied with scattering or atomic force microscopy techniques. In our previous study, we have shown that large fluorescent hollow poly(N-isopropylacrylamide) (PNIPAM) microgels could be synthesized using micrometer-sized silica particles as sacrificial templates allowing their investigation in situ via confocal microscopy. In this work, we extend this approach to charged large hollow microgels based on poly(N-isopropylacrylamide-co-itaconic acid) (P(NIPAM-co-IA)). Hereby, we compare the structure and responsivity of "neutral" (PNIPAM) and "charged" (P(NIPAM-co-IA)) hollow microgel systems synthesized under similar conditions with the same sacrificial template using confocal and atomic force microscopy and light scattering techniques. In particular, we could demonstrate the extremely soft character of the swollen charged hollow microgels and their responsivity to pH, ionic strength, and temperature. To conclude this study, the buckling behavior of the different capsules was investigated illustrating the potential of such systems to change its conformation by varying the osmotic pressure and pH conditions.

2.
Langmuir ; 35(14): 4946-4955, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30874440

RESUMO

We employ a system of cubic colloids with rounded corners to study the close-packed monolayers that form via convective assembly. We show that by controlled solvent evaporation large densely packed monolayers of colloidal cubes are obtained. Using scanning electron microscopy and particle-tracking algorithms, we investigate the local order in detail and show that the obtained monolayers possess their predicted close-packed optimal packings, the Λ0-lattice and the Λ1-lattice, as well as the simple square-lattice and disordered packings. We further show that shape details of the cube corners are important for the final packing symmetry, where the frequency of the Λ1-lattice increases with decreasing roundness of the corners, whereas the frequency of the Λ0-lattice is unaffected. The formation of both optimal packings is found to be a consequence of the out-of-equilibrium formation process, which leads to small shifts in rows of cubes, thereby transforming the Λ1-lattice into the Λ0-lattice.

3.
Langmuir ; 32(16): 3970-6, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27046046

RESUMO

We present the synthesis of monodisperse cone-shaped silica colloids and their fluorescent labeling. Rod-like silica colloids prepared by ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water droplets containing polyvinylpyrrolidone cross-linked by citrate ions in pentanol were found to transform into cone-shaped particles upon mild etching by NaOH in water. The diameter and length of the resulting particles were determined by those of the initial rod-like silica colloids. The mechanism responsible for the cone-shape involves silica etching taking place with a varying rate along the length of the particle. Our experiments thus also lead to new insights into the variation of the local particle structure and composition. These are found to vary gradually along the length of the rod, as a result of the way the rod grows out of a water droplet that keeps itself attached to the flat end of the bullet-shaped particles. Subtle differences in composition and structure could also be resolved by high-resolution stimulated emission depletion confocal microscopy on fluorescently labeled particles. The incorporation of a fluorescent dye chemically attached to an amine-based silane coupling agent resulted in a distribution of fluorophores mainly on the outside of the rod-shaped particles. In contrast, incorporation of the silane coupling agent alone resulted in a homogeneous distribution. Additionally, we show that etching rods, where a silane coupling agent alone was incorporated and subsequently coupled to a fluorescent dye, resulted in fluorescent silica cones, the orientation of which can be discerned using super-resolution confocal microscopy.

4.
Soft Matter ; 11(6): 1067-77, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25523360

RESUMO

The self-assembly of anisotropic patchy particles with a triangular shape was studied by experiments and computer simulations. The colloidal particles were synthesized in a two-step seeded emulsion polymerization process, and consist of a central smooth lobe connected to two rough lobes at an angle of ∼90°, resembling the shape of a "Mickey Mouse" head. Due to the difference in overlap volume, adding an appropriate depletant induces an attractive interaction between the smooth lobes of the colloids only, while the two rough lobes act as steric constraints. The essentially planar geometry of the Mickey Mouse particles is a first geometric deviation of dumbbell shaped patchy particles. This new geometry enables the formation of one-dimensional tube-like structures rather than spherical, essentially zero-dimensional micelles. At sufficiently strong attractions, we indeed find tube-like structures with the sticky lobes at the core and the non-sticky lobes pointing out as steric constraints that limit the growth to one direction, providing the tubes with a well-defined diameter but variable length both in experiments and simulations. In the simulations, we found that the internal structure of the tubular fragments could either be straight or twisted into so-called Bernal spirals.

5.
ACS Nano ; 17(8): 7257-7271, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053566

RESUMO

Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

6.
J Colloid Interface Sci ; 635: 552-561, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36608391

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) microgels and PNIPAM colloidal shells attract continuous strong interest due to their thermoresponsive behavior, as their size and properties can be tuned by temperature. The direct single particle observation and characterization of pure, unlabeled PNIPAM microgels in their native aqueous environment relies on imaging techniques that operate either at interfaces or in cryogenic conditions, thus limiting the observation of their dynamic nature. Liquid Cell (Scanning) Transmission Electron Microscopy (LC-(S) TEM) imaging allows the characterization of materials and dynamic processes such as nanoparticle growth, etching, and diffusion, at nanometric resolution in liquids. Here we show that via a facile post-synthetic in situ polymer labelling step with high-contrast marker core-shell Au@SiO2 nanoparticles (NPs) it is possible to determine the full volume of PNIPAM microgels in water. The labelling allowed for the successful characterization of the thermoresponsive behavior of PNIPAM microgels and core shell silica@PNIPAM hybrid microgels, as well as the co-nonsolvency of PNIPAM in aqueous alcoholic solutions. The interplay between electron beam irradiation and PNIPAM systems in water resulted in irreversible shrinkage due to beam induced water radiolysis products, which in turn also affected the thermoresponsive behavior of PNIPAM. The addition of 2-propanol as radical scavenger improved PNIPAM stability in water under electron beam irradiation.

7.
Langmuir ; 28(20): 7631-8, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22515482

RESUMO

The vertical deposition technique for creating crystalline microstructures is applied for the first time to nonspherical colloids in the form of hollow silica cubes. Controlled deposition of the cubes results in large crystalline films with variable symmetry. The microstructures are characterized in detail with scanning electron microscopy and small-angle X-ray scattering. In single layers of cubes, distorted square to hexagonal ordered arrays are formed. For multilayered crystals, the intralayer ordering is predominantly hexagonal with a hollow site stacking, similar to that of the face centered cubic lattice for spheres. Additionally, a distorted square arrangement in the layers is also found to form under certain conditions. These crystalline films are promising for various applications such as photonic materials.

8.
ACS Nano ; 14(11): 15748-15756, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33175507

RESUMO

Nature suggests that complex materials result from a hierarchical organization of matter at different length scales. At the nano- and micrometer scale, macromolecules and supramolecular aggregates spontaneously assemble into supracolloidal structures whose complexity is given by the coexistence of various colloidal entities and the specific interactions between them. Here, we demonstrate how such control can be implemented by engineering specially customized bile salt derivative-based supramolecular tubules that exhibit a highly specific interaction with polymeric microgel spheres at their extremities thanks to their scroll-like structure. This design allows for hierarchical supracolloidal self-assembly of microgels and supramolecular scrolls into a regular framework of "nodes" and "linkers". The supramolecular assembly into scrolls can be triggered by pH and temperature, thereby providing the whole supracolloidal system with interesting stimuli-responsive properties. A colloidal smart assembly is embodied with features of center-linker frameworks as those found in molecular metal-organic frameworks and in structures engineered at human scale, masterfully represented by the Atomium in Bruxelles.

9.
Chem Mater ; 31(2): 521-531, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30686858

RESUMO

We present the synthesis of colloidal silica particles with new shapes by manipulating the growth conditions of rods that are growing from polyvinylpyrrolidone-loaded water-rich droplets containing ammonia and ethanol. The silica rods grow by ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The lengthwise growth of these silica rods gives us the opportunity to change the conditions at any time during the reaction. In this work, we vary the availability of hydrolyzed monomers as a function of time and study how the change in balance between the hydrolysis and condensation reactions affects a typical synthesis (as described in more detail by our group earlier1). First, we show that in a "standard" synthesis, there are two silica growth processes occurring; one in the oil phase and one in the droplet. The growth process in the water droplet causes the lengthwise growth of the rods. The growth process in the oil phase produces a thin silica layer around the rods, but also causes the nucleation of 70 nm silica spheres. During a typical rod growth, silica formation mainly takes place in the droplet. The addition of partially hydrolyzed TEOS or tetramethoxysilane (TMOS) to the growth mixture results in a change in balance between the hydrolysis and condensation reaction. As a result, the growth also starts to take place on the surface of the water droplet and thus from the oil phase, not only from inside the droplet onto a silica rod sticking out of the droplet. Carefully tuning the growth from the droplet and the growth from the oil phase allowed us to create nanospheres, hollow silica rods, hollow sphere rod systems (colloidal matchsticks), and bent silica rods.

10.
Chem Mater ; 29(7): 3304-3313, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28413261

RESUMO

We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod-cone or cone-cone shapes. Deliberately modulating the composition along the particle's length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF.

11.
J Phys Chem C Nanomater Interfaces ; 121(36): 19989-19998, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-29057028

RESUMO

Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for "lollipop"-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa