Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 338(4): 215-224, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34855303

RESUMO

In this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana. In the Hox gene cluster of the calanoid copepod Eurytemora affinis, all the Hox genes were present linearly in the genome but the Antp gene was duplicated. Of the three representative copepods, the P. nana Hox gene cluster was the most compact due to its small genome size. The Hox gene expression profile patterns in the three representative copepods were stage-specific. The Lab, Dfd, Scr, Pb, Ftz, and Hox3 genes showed a high expression in early developmental stages but Antp, Ubx, Abd-A, and Abd-B genes were mostly expressed in later developmental stages, implying that these Hox genes may be closely associated with the development of segment identity during early development.


Assuntos
Copépodes , Genes Homeobox , Animais , Copépodes/genética , Medicamentos de Ervas Chinesas , Chumbo/química , Família Multigênica
2.
Biosci Biotechnol Biochem ; 85(3): 703-713, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624778

RESUMO

In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.


Assuntos
Íons Pesados , Rotíferos/efeitos da radiação , Ração Animal , Animais , Aquicultura , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Mutação , Radiação Ionizante , Rotíferos/genética , Rotíferos/crescimento & desenvolvimento , Rotíferos/fisiologia
3.
Environ Sci Technol ; 54(13): 7858-7869, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490673

RESUMO

Ocean acidification (OA) is caused by changes in ocean carbon chemistry due to increased atmospheric pCO2 and is predicted to have deleterious effects on marine ecosystems. While the potential impacts of OA on many marine species have been studied, the multigenerational effects on asexual organisms remain unknown. We found that low seawater pH induced oxidative stress and DNA damage, decreasing growth rates, fecundity, and lifespans in the parental generation, whereas deleterious effects on in vivo endpoints in F1 and F2 offspring were less evident. The findings suggest that multigenerational adaptive effects play a role in antioxidant abilities and other defense mechanisms. OA-induced DNA damage, including double-strand breaks (DSBs), was fully repaired in F1 offspring of parents exposed to OA for 7 days, indicating that an adaptation mechanism may be the major driving force behind multigenerational adaptive effects. Analysis of epigenetic modification in response to OA involved examination of histone modification of DNA repair genes and a chromatin immunoprecipitation assay, as Bombus koreanus has no methylation pattern for CpG in its genome. We conclude that DSBs, DNA repair, and histone modification play important roles in multigenerational plasticity in response to OA in an asexual monogonont rotifer.


Assuntos
Antioxidantes , Água do Mar , Animais , Dióxido de Carbono , Dano ao DNA , Ecossistema , Epigênese Genética , Concentração de Íons de Hidrogênio
4.
Gen Comp Endocrinol ; 252: 219-225, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673513

RESUMO

Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems.


Assuntos
Evolução Biológica , Genoma , Receptores Citoplasmáticos e Nucleares/genética , Rotíferos/genética , Fatores de Transcrição/genética , Animais , Sistema Endócrino/metabolismo , Anotação de Sequência Molecular , Filogenia , Especificidade da Espécie
5.
Bull Environ Contam Toxicol ; 97(3): 387-91, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27230026

RESUMO

We examined the tolerance of the monogonont rotifer Brachionus koreanus in response to gamma radiation. In order to determine the median lethal dose (LD50) of rotifers against gamma radiation, we irradiated B. koreanus with gamma rays from 0 to 7000 grays (Gy). The LD50s were 2900 and 2300 Gy at 24 h (LD50-24 h) and 96 h (LD50-96 h) after irradiation, respectively. In addition, the no observed effect levels (NOEL) were 1500 and 1000 Gy at 24 and 96 h, respectively. This is the first determination of lethal doses of gamma radiation for B. koreanus, which could be useful in ecological assessment of gamma radiation toward aquatic life and could be useful for understanding toxic mechanisms over sublethal doses.


Assuntos
Raios gama/efeitos adversos , Rotíferos/efeitos da radiação , Animais , Humanos , Dose Letal Mediana , Nível de Efeito Adverso não Observado
6.
Mar Pollut Bull ; 207: 116858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159571

RESUMO

Marine organisms' lipid metabolism contributes to marine ecosystems by producing a variety of lipid molecules. Historically, research focused on the lipid metabolism of the organisms themselves. Recent microbiome studies, however, have revealed that gut microbial communities influence the amount and type of lipids absorbed by organisms, thereby altering the organism's lipid metabolism. This has highlighted the growing importance of research on gut microbiota. This review highlights mechanisms by which gut microbiota facilitate lipid digestion and diversify the lipid pool in aquatic animals through the accelerated degradation of exogenous lipids and the transformation of lipid molecules. We also assess how environmental factors and pollutants, along with the innovative use of probiotics, interact with the gut microbiome to influence lipid metabolism within the host. We aim to elucidate the complex interactions between lipid metabolism and gut microbiota in aquatic animals by synthesizing current research and identifying knowledge gaps, providing a foundation for future explorations.


Assuntos
Organismos Aquáticos , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Organismos Aquáticos/metabolismo , Animais , Ecossistema , Probióticos
7.
J Hazard Mater ; 473: 134641, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788572

RESUMO

Here, we investigate the effects of acute and chronic exposure to arsenate (AsV) and arsenite (AsIII) in the marine medaka Oryzias melastigma. In vivo effects, biotransformation, and oxidative stress were studied in marine medaka exposed to the two inorganic arsenics for 4 or 28 days. An investigation of embryonic development revealed no effect on in vivo parameters, but the hatching rate increased in the group exposed to AsIII. Exposure to AsIII also caused the greatest accumulation of arsenic in medaka. For acute exposure, the ratio of AsV to AsIII was higher than that of chronic exposure, indicating that bioaccumulation of inorganic arsenic can induce oxidative stress. The largest increase in oxidative stress was observed following acute exposure to AsIII, but no significant degree of oxidative stress was induced by chronic exposure. During acute exposure to AsV, the increase in the enzymatic activity of glutathione-S-transferase (GST) was twice as high compared with exposure to AsIII, suggesting that GST plays an important role in the initial detoxification process. In addition, an RNA-seq-based ingenuity pathway analysis revealed that acute exposure to AsIII may be related to cell-cycle progression. A network analysis using differentially expressed genes also revealed a potential link between the generation of inflammatory cytokines and oxidative stress due to arsenic exposure.


Assuntos
Arseniatos , Glutationa Transferase , Oryzias , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Oryzias/metabolismo , Oryzias/genética , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Arseniatos/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Arsenitos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo
8.
Mar Pollut Bull ; 205: 116633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936003

RESUMO

In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Hipóxia , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Oxigênio/metabolismo , Águas Salinas
9.
Bioorg Med Chem ; 21(4): 979-92, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294830

RESUMO

PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD) class of PPARγ full agonists. Herein we report the initial discovery of partial agonist 4 and the structure-activity relationship studies that led to the selection of clinical compound INT131 (3), a potent PPARγ partial agonist that displays robust glucose-lowering activity in rodent models of diabetes while exhibiting a reduced side-effects profile compared to marketed TZDs.


Assuntos
PPAR gama/agonistas , Quinolinas/química , Sulfonamidas/química , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Meia-Vida , Resistência à Insulina , Masculino , Camundongos , PPAR gama/metabolismo , Estrutura Terciária de Proteína , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
10.
Rev Fish Biol Fish ; 33(2): 317-347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122954

RESUMO

A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.

11.
Aquat Toxicol ; 246: 106135, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35301178

RESUMO

Iron (Fe), a trace metal in coastal waters has increased significantly due to anthropogenic activities, however, few studies have examined its toxicity to marine organism reproduction and associated mechanisms. We employed two marine rotifers, the temperate Brachionus plicatilis, and tropical B. rotundiformis to investigate the toxicity of iron (FeSO4•7H2O) and its deleterious effects on reproductive features in females (sexual fecundity, abnormal resting eggs, and swimming speed) and males (lifespan, swimming speed, and spermatozoa quality) under lethal and sub-lethal exposure. The 24 h median lethal concentration (LC50) of iron was determined as 0.9 and 1.7 µg/mL per ng of dry weight for B. plicatilis and B. rotundiformis, respectively. During sub-lethal iron (20-75 µg/mL) exposure, higher iron (≥ 20 µg/mL for B. plicatilis and ≥ 45 µg/mL for B. rotundiformis) induced rotifer sexual toxicity especially in normal resting egg development and production. These were supported by the data of male shorter lifespan, poor sperm vitality, and rotifer behavioral changes as the iron concentration increased. Iron effects on swimming behavior, slower males and faster females, should reduce male/female encounter rates associated with inactive fertilized egg (resting egg) production. Two rotifer species exhibited different iron-response patterns in genetic and enzymatic activities including iron homeostasis-maintaining related Fe-S protein, and oxidative/antioxidant related lipid peroxidation product (MDA), superoxidase dismutase/SOD, catalase/CAT, and cytochrome P450 under acute iron exposure. Antioxidant activities were vulnerable in B. plicatilis but kept activities in B. rotundiformis, which may attribute to their temperate and tropical habitat adaptations.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Ecossistema , Feminino , Ferro/toxicidade , Masculino , Reprodução , Poluentes Químicos da Água/toxicidade
12.
Mar Biotechnol (NY) ; 24(1): 226-242, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35262805

RESUMO

The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.


Assuntos
Receptores Acoplados a Proteínas G , Rotíferos , Animais , Evolução Biológica , Genoma , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-36055628

RESUMO

Studies of changes in fatty acids in response to environmental temperature changes have been conducted in many species, particularly mammals. However, few studies have considered aquatic invertebrates, even though they are particularly vulnerable to changes in environmental temperature. In this review, we summarize the process by which animals synthesize common fatty acids and point out differences between the fatty acid profiles of vertebrates and those of aquatic invertebrates. Unlike vertebrates, some aquatic invertebrates can directly synthesize polyunsaturated fatty acids (PUFAs), which can be used to respond to temperature changes. Various studies have shown that aquatic invertebrates increase the degree of saturation in their fatty acids through an increase in saturated fatty acid production or a decrease in PUFAs as the temperature increases. In addition, we summarize recent studies that have examined the complex effects of temperature and combinational stressors to determine whether the degree of saturation in aquatic invertebrates is influenced by other factors. The combined effects of carbon dioxide partial pressure, food quality, starvation, salinity, and chemical exposures have been confirmed, and fatty acid profile changes in response to high temperature were greater than those from combinational stressors.


Assuntos
Dióxido de Carbono , Metabolismo dos Lipídeos , Animais , Dióxido de Carbono/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Invertebrados , Mamíferos , Penicilinas/metabolismo , Penicilinas/farmacologia , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-35245781

RESUMO

Monogonont rotifers are common species in aquatic environments and make model species for ecotoxicology studies. Whole genomes of several species of the genus Brachionus have been assembled, but no information on the freshwater rotifer Brachionus rubens has been reported. In this study, the whole-genome sequence of B. rubens was successfully assembled using NextDenovo. The total length of the genome was 132.7 Mb (N50 = 2.51 Mb), including 122 contigs. The GC contents accounted for 29.96% of the genome. Aquatic organisms are always exposed to various external stresses, and a comprehensive genomic analysis is needed to better understand the adverse effects on organisms. This paper focuses on the ecotoxicological aspect and conducted genome analysis of representative gene families involved in detoxification mechanisms against environmental stressors. Specifically, we identified cytochrome P450 genes (CYPs) of phase I, glutathione S-transferase genes (GSTs) of phase II, and ATP-binding cassette transporter genes (ABCs) of phase III in the genome of B. rubens. Gene duplications were found in CYP, GST, and ABC genes, as is the case for other Brachionus rotifers. Our results suggest that these detoxification-related gene families have evolved in a species-specific and/or lineage-specific manner. This paper improves our understanding of how the freshwater Brachionus rotifers respond to environmental stressors in a molecular ecotoxicology context.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Sistema Enzimático do Citocromo P-450/genética , Ecotoxicologia , Água Doce , Genoma , Rotíferos/genética , Poluentes Químicos da Água/toxicidade
15.
Mar Pollut Bull ; 180: 113752, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35617743

RESUMO

This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.


Assuntos
Ecotoxicologia , Rotíferos , Animais , Austrália , Genoma , Metagenômica , Rotíferos/genética
16.
J Pharmacol Exp Ther ; 336(2): 321-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20974698

RESUMO

Inhibitors of microsomal triglyceride transfer protein (MTP) expressed in the liver and small intestine are potential candidates for lipid-lowering agents. However, inhibition of hepatic MTP could lead to significant safety issues such as fatty liver disease. To develop a specific inhibitor of intestinal MTP, JTT-130 [diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl}acetyloxymethyl)-2-phenylmalonate], was designed to be rapidly hydrolyzed in the absorption process. Here, we describe JTT-130, an intestine-specific MTP inhibitor, and evaluate its pharmacological properties. In in vitro metabolic stability tests, JTT-130 was readily hydrolyzed during incubation with liver S9 from humans, hamsters, and rats. In an in vitro triglyceride (TG) transfer assay with human intestinal MTP, JTT-130 potently inhibited TG transfer activity with an IC(50) value of 0.83 nM. When orally administered to hamsters, JTT-130 significantly suppressed an increase in chylomicron-TG after olive oil loading at 0.3 mg/kg and above but did not inhibit TG secretion from the liver at doses of up to 1000 mg/kg, indicating an inhibitory action highly specific for the small intestine. In rats orally administered [(14)C]triolein, JTT-130 potently suppressed an increase in blood (14)C radioactivity and increased (14)C radioactivity in the upper small intestine and the intestinal lumen. In hyperlipidemic hamsters fed a high-fat and high-cholesterol diet, repeated dosing with JTT-130 for 2 weeks reduced TG and cholesterol levels in the plasma and TG content in the liver. These results indicated that JTT-130 is a potent inhibitor specific to intestinal MTP and suggested that JTT-130 would be a useful compound for the treatment of dyslipidemia without inducing hepatotoxicity.


Assuntos
Benzamidas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Hipolipemiantes/farmacologia , Intestinos/efeitos dos fármacos , Malonatos/farmacologia , Animais , Apolipoproteínas B/metabolismo , Benzamidas/metabolismo , Células CACO-2 , Colesterol/metabolismo , Cricetinae , Humanos , Hipolipemiantes/metabolismo , Masculino , Malonatos/metabolismo , Mesocricetus , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
17.
Artigo em Inglês | MEDLINE | ID: mdl-34157608

RESUMO

The minute marine rotifer Proales similis is a potential model species for ecotoxicological and ecophysiological studies. Therefore, the provision of whole-genome data for P. similis is an easy way to deepen understanding of the molecular mechanisms involved in response to various environmental stressors. In this research, we assembled the whole-genome sequence (32.7 Mb total, N50 = 2.42 Mb) of P. similis, consisting of 15 contigs with 10,785 annotated genes. To understand the ligand-receptor signaling pathway in rotifers in response to environmental cues, we identified 401 G protein-coupled receptor (GPCR) genes in the P. similis genome and compared them with those from other species. The 401 full-length GPCR genes were classified into five distinct classes: A (363), B (18), C (7), F (2), and other (11). Most GPCR gene families have undergone sporadic evolutionary processes. However, some classes were highly conserved between species. Overall, this result provides new information about GPCR-based signaling pathways and the evolution of GPCRs in the minute rotifer P. similis, and it expands our knowledge of ligand-receptor signaling pathways in response to various environmental cues.


Assuntos
Genoma Helmíntico , Proteínas de Helminto/genética , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética , Animais , Anotação de Sequência Molecular , Filogenia
18.
Artigo em Inglês | MEDLINE | ID: mdl-34655966

RESUMO

G protein-coupled receptors (GPCRs) are considered to have originated from early evolution of eukaryotic species, therefore, the genome-wide identification of GPCR genes can provide insight into the adaptive strategy and evolutionary tendency in an animal taxon. Here, we identified a total 216 full-length GPCR genes in the marine water flea Diaphanosoma celebensis genome, which were classified into five distinct classes (A, B, C, F, and other). Phylogenetic comparison of GPCRs in D. celebensis to those in humans (Homo sapiens), fruitfly (Drosophila melanogaster), and freshwater water flea (Daphnia magna) reveals a high level of orthological relationship of amine, neuropeptide, and opsin receptor repertoire, while purinergic and chemokine receptors were highly differentiated in humans. Our findings suggest sporadic evolutionary processes within the GPCR gene families identified in D. celebensis. In this study, these results may provide a better understanding on the evolution of GPCRs, and expand our knowledge of the cladoceran GPCR gene repertories which in part, mediate cell physiological mechanisms in response to various environmental stimuli.


Assuntos
Cladocera , Animais , Cladocera/genética , Drosophila melanogaster , Genoma , Filogenia , Receptores Acoplados a Proteínas G/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-33940320

RESUMO

Brachionus spp. rotifers have been proposed as model organisms for ecotoxicological studies. We analyzed the whole-genome sequence of B. paranguensis through NextDenovo, resulting in a total length of 106.2 Mb and 71 contigs. The N50 and the GC content were 4.13 Mb and 28%, respectively. A total of 18,501 genes were predicted within the genome of B. paranguensis. Prominent detoxification-related gene families of phase I and II detoxifications have been investigated. In parallel with other Brachionus rotifers, high gene expansion was observed in CYP clan 3 and GST sigma class in B. paranguensis. Moreover, species-specific expansion of sulfotransferase (SULTs) and gain of UDP-glucuronosyltransferases (UGTs) through horizontal gene transfer has been specifically found within B. plicatilis complex. This whole-genome analysis of B. paranguensis provides a basis for molecular ecotoxicological studies and provides useful information for comparative studies of the evolution of detoxification mechanisms in Brachionus spp.


Assuntos
Ecotoxicologia , Regulação da Expressão Gênica , Genoma Helmíntico , Proteínas de Helminto/metabolismo , Metagenômica , Rotíferos/genética , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Helminto/genética , Filogenia , Especificidade da Espécie
20.
Chemosphere ; 277: 130317, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33780671

RESUMO

Two euryhaline rotifers, the temperate species Brachionus plicatilis and tropical species Brachionus rotundiformis, were used to investigate the effects of iron (FeSO4·7H2O), an essential trace metal, on reproductive patterns and lifetables, including the metabolism of lipid and reactive oxygen species (ROS). B. plicatilis was more sensitive to iron with regard to sexual reproduction. While iron had no significant effect on the population growth at 0-48 µg/mL, it caused a decrease in the resting egg production. B. plicatilis exposed to 6 and 12 µg/mL of iron showed an increase in the intracellular ROS levels and a decrease in the neutral lipid content in sexual organs, accompanied by downregulation of antioxidant components CuZnSOD and two cytochromes (CYP clan 2&3). These patterns suggested that iron-induced oxidative stress was not neutralized by its antioxidant defense system, thus negatively affecting the fecundity of fertilized mictic females. However, B. rotundiformis showed a dose-dependent increase in population growth with extended lifespan and positive sexual reproduction in response to 0-24 µg/mL iron. Furthermore, compared to Fe-exposed B. plicatilis, B. rotundiformis showed better antioxidant mechanism, whereas genes involved in lipid synthesis (citrate lyase, mitochondrial CYP) and reproduction (vasa, sirtuin-2) were significantly upregulated compared to the control, implying that B. rotundiformis was likely to have higher resilience in response to iron-induced oxidative stress. These findings suggest that iron is likely to cause interspecific interactions in the B. plicatilis species complex, whereas the tropical species B. rotundiformis may have evolved an effective defense mechanism against iron-induced stress.


Assuntos
Ferro , Rotíferos , Animais , Feminino , Lipídeos , Espécies Reativas de Oxigênio , Reprodução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa