RESUMO
Peucedanum japonicum (the family Umbelliferae) is a perennial herbaceous plant with various crucial traditional values for coughs, colds, headaches, and inflammatory responses. For drug developments, the current research aims to offer an overview of the previous results in the three main aspects of traditional use, phytochemistry, pharmacological values, and molecular mechanisms regarding this medicinal species. By chromatographic analysis and separation, more than 120 isolated compounds have been obtained. Khellactone-type coumarins and phenolic compounds are the primary phytochemical classes with some coumarins, such as calipteryxin, praerutorin A, and pteryxin, being the main metabolites. Pharmacological activities of P. japonicum constituents included anticancer, antioxidative, antimicrobial, antiviral, antiplatelet, and tyrosine inhibitory activities, especially anti-inflammation and anti-obesity. It is worth mentioning that the obtained constituents joined to protect the neurons, bone, and urine systems, and exerted vasorelaxant. In general, the underlying mechanism of anti-inflammatory action can be explained by mitogen-activated protein kinase/nuclear factor-kappa B (MAPK/NF-κB) signaling pathway, whereas anti-obesity activity is deduced from regulating lipid metabolism-related genes. It also noted that pteryxin is the most active compound, but the clinical studies and synthesis of new derivatives containing enhanced medicinal values have been still limited, which should be improved.
RESUMO
In this paper, a novel bimetallic Fe-Cu metal-organic framework combined with 1,3,5-benzenetricarboxylic acid (Fe-Cu-BTC) are synthesized using hydrothermal reaction. The bimetallic Fe-Cu-BTC with high BET (1504 cm3 g-1) and high Langmuir surface area (1831 cm3 g-1) is composited by gold nanoparticles to improve the conductivity and to develop their synergistic effect. A novel bisphenol A (BPA) sensor was prepared by dropcasting Fe-Cu-BTC on glassy carbon electrodes (GCE) followed by AuNPs electrodeposition. The Fe-Cu-BTC framework were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy studies (TEM), FT-IR, BET measurements and EDX spectra. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried out for surveying the electrochemical properties of the sensors and for the quantification of BPA. Two linear ranges of BPA concentrations 0.1-1.0 µM and 1.0-18 µM with 18 nM limit of detection were obtained. The developed sensor was used to measure the concentration of BPA in samples extracted from rain coat with the recovery ranging from 85.70 to 103.23%.