Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(1): 149-161, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219205

RESUMO

The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found. Their expression profiles were retrieved from available databases and indicated that many are actively expressed during plant development or interaction with pathogens. We selected MBL1 for further investigation and generated stable transgenic FaMBL1-overexpressing plants of F. ×ananassa to examine the role of this gene in defense. Plants were selected and evaluated for their contents of disease-related phytohormones and their reaction to biotic stresses, and this revealed that jasmonic acid decreased in the overexpressing lines compared with the wild-type (WT). Petioles of the overexpressing lines inoculated with Colletotrichum fioriniae had lower disease incidence than the WT, and leaves of these lines challenged by Botrytis cinerea showed significantly smaller lesion diameters than the WT and higher expression of CLASS II CHITINASE 2-1. Our results indicate that FaMBL1 plays important roles in strawberry response to fungal diseases caused by C. fioriniae and B. cinerea.


Assuntos
Fragaria , Lectinas , Lectinas/genética , Lectinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Genes de Plantas , Família , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Plant Cell Environ ; 40(8): 1409-1428, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28239986

RESUMO

Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cultivar Pinot Noir were infected with green fluorescent protein (GFP)-labelled B. cinerea and studied at 24 and 96 hours post-inoculation (h.p.i.). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell-wall-degrading enzymes, phytotoxins and proteases. Grapevine responded with a rapid defence reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 h.p.i., the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defence responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favourable to resume pathogenic development.


Assuntos
Botrytis/fisiologia , Flores/microbiologia , Interações Hospedeiro-Patógeno/genética , Vitis/genética , Vitis/microbiologia , Vias Biossintéticas , Botrytis/genética , Parede Celular/metabolismo , Flores/genética , Flores/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma/genética , Doenças das Plantas/microbiologia , Polifenóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário , Análise de Sequência de RNA , Software , Transcriptoma/genética , Regulação para Cima/genética , Vitis/imunologia
3.
Plants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805521

RESUMO

Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.

4.
Front Plant Sci ; 12: 667539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084177

RESUMO

Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevine, attacking all green parts of the plant. The damage is severe when the infection at flowering stage is left uncontrolled. P. viticola management consumes a significant amount of classical pesticides applied in vineyards, requiring efficient and environmentally safe disease management options. Spray-induced gene silencing (SIGS), through the application of exogenous double-stranded RNA (dsRNA), has shown promising results for the management of diseases in crops. Here, we developed and tested the potential of dsRNA targeting P. viticola Dicer-like (DCL) genes for SIGS-based crop protection strategy. The exogenous application of PvDCL1/2 dsRNA, a chimera of PvDCL1 and PvDCL2, highly affected the virulence of P. viticola. The reduced expression level of PvDCL1 and PvDCL2 transcripts in infected leaves, treated with PvDCL1/2 dsRNA, was an indication of an active RNA interference mechanism inside the pathogen to compromise its virulence. Besides the protective property, the PvDCL1/2 dsRNA also exhibited a curative role by reducing the disease progress rate of already established infection. Our data provide a promising future for PvDCL1/2 dsRNA as a new generation of RNA-based resistant plants or RNA-based agrochemical for the management of downy mildew disease in grapevine.

5.
Front Plant Sci ; 10: 1131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620156

RESUMO

Gray mold caused by Botrytis cinerea is a major cause of economic losses in strawberry fruit production, limiting fruit shelf life and commercialization. When the fungus infects Fragaria × ananassa strawberry at flowering or unripe fruit stages, symptoms develop after an extended latent phase on ripe fruits before or after harvesting. To elucidate the growth kinetics of B. cinerea on flower/fruit and the molecular responses associated with low susceptibility of unripe fruit stages, woodland strawberry Fragaria vesca flowers and fruits, at unripe white and ripe red stages, were inoculated with B. cinerea. Quantification of fungal genomic DNA within 72 h postinoculation (hpi) showed limited fungal growth on open flower and white fruit, while on red fruit, the growth was exponential starting from 24 hpi and sporulation was observed within 48 hpi. RNA sequencing applied to white and red fruit at 24 hpi showed that a total of 2,141 genes (12.5% of the total expressed genes) were differentially expressed due to B. cinerea infection. A broad transcriptional reprogramming was observed in both unripe and ripe fruits, involving in particular receptor and signaling, secondary metabolites, and defense response pathways. Membrane-localized receptor-like kinases and nucleotide-binding site leucine-rich repeat genes were predominant in the surveillance system of the fruits, most of them being downregulated in white fruits and upregulated in red fruits. In general, unripe fruits exhibited a stronger defense response than red fruits. Genes encoding for pathogenesis-related proteins and flavonoid polyphenols as well as genes involved in cell-wall strengthening were upregulated, while cell-softening genes appeared to be switched off. As a result, B. cinerea remained quiescent in white fruits, while it was able to colonize ripe red fruits.

6.
Front Plant Sci ; 10: 1704, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082332

RESUMO

Botrytis cinerea is an important necrotroph in vineyards. Primary infections are mostly initiated by airborne conidia from overwintered sources around bloom, then the fungus remains quiescent from bloom till maturity and egresses at ripeness. We previously described in detail the process of flower infection and quiescence initiation. Here, we complete the characterization studying the cross-talk between the plant and the fungus during pathogen quiescence and egression by an integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir were inoculated with a GFP-labeled strain of B. cinerea at full cap-off stage, and molecular analyses were carried out at 4 weeks post inoculation (wpi, fungal quiescent state) and at 12 wpi (fungal pre-egression and egression states). The expressed fungal transcriptome highlighted that the fungus remodels its cell wall to evade plant chitinases besides undergoing basal metabolic activities. Berries responded by differentially regulating genes encoding for different PR proteins and genes involved in monolignol, flavonoid, and stilbenoid biosynthesis pathways. At 12 wpi, the transcriptome of B. cinerea in the pre-egressed samples showed that virulence-related genes were expressed, suggesting infection process was initiated. The egressed B. cinerea expressed almost all virulence and growth related genes that enabled the pathogen to colonize the berries. In response to egression, ripe berries reprogrammed different defense responses, though futile. Examples are activation of membrane localized kinases, stilbene synthases, and other PR proteins related to SA and JA-mediated responses. Our results indicated that hard-green berries defense program was capable to hamper B. cinerea growth. However, ripening associated fruit cell wall self-disassembly together with high humidity created the opportunity for the fungus to egress and cause bunch rot.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa