Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 16(3): e1008422, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187176

RESUMO

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinogênese/genética , Saccharomyces cerevisiae/genética , Animais , Dano ao DNA/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Genômica/métodos , Proteína Homóloga a MRE11/genética , Mutação/genética , Células Sf9 , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
2.
J Biol Chem ; 294(26): 10120-10130, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31073030

RESUMO

In Saccharomyces cerevisiae, Tel1 protein kinase, the ortholog of human ataxia telangiectasia-mutated (ATM), is activated in response to DNA double-strand breaks. Biochemical studies with human ATM and genetic studies in yeast suggest that recruitment and activation of Tel1ATM depends on the heterotrimeric MRXMRN complex, composed of Mre11, Rad50, and Xrs2 (human Nbs1). However, the mechanism of activation of Tel1 by MRX remains unclear, as does the role of effector DNA. Here we demonstrate that dsDNA and MRX activate Tel1 synergistically. Although minimal activation was observed with 80-mer duplex DNA, the optimal effector for Tel1 activation is long, nucleosome-free DNA. However, there is no requirement for DNA double-stranded termini. The ATPase activity of Rad50 is critical for activation. In addition to DNA and Rad50, either Mre11 or Xrs2, but not both, is also required. Each of the three MRX subunits shows a physical association with Tel1. Our study provides a model of how the individual subunits of MRX and DNA regulate Tel1 kinase activity.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nucleossomos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 294(49): 18846-18852, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31640985

RESUMO

Saccharomyces cerevisiae Tel1 is the ortholog of human ATM kinase and initiates a cell cycle checkpoint in response to dsDNA breaks (DSBs). Tel1ATM kinase is activated synergistically by naked dsDNA and the Mre11-Rad50-Xrs2NBS1 complex (MRX). A multisubunit protein complex, which is related to human shelterin, protects telomeres from being recognized as DSBs, thereby preventing a Tel1ATM checkpoint response. However, at very short telomeres, Tel1ATM can be recruited and activated by the MRX complex, resulting in telomere elongation. Conversely, at long telomeres, Rap1-interacting-factor 2 (Rif2) is instrumental in suppressing Tel1 activity. Here, using an in vitro reconstituted Tel1 kinase activation assay, we show that Rif2 inhibits MRX-dependent Tel1 kinase activity. Rif2 discharges the ATP-bound form of Rad50, which is essential for all MRX-dependent activities. This conclusion is further strengthened by experiments with a Rad50 allosteric ATPase mutant that maps outside the conserved ATP binding pocket. We propose a model in which Rif2 attenuates Tel1 activity at telomeres by acting directly on Rad50 and discharging its activated ATP-bound state, thereby rendering the MRX complex incompetent for Tel1 activation. These findings expand our understanding of the mechanism by which Rif2 controls telomere length.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo
4.
J Biol Chem ; 291(26): 13436-47, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129217

RESUMO

The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/química , Multimerização Proteica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos , Domínios Proteicos , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
5.
Structure ; 28(1): 96-104.e3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31740029

RESUMO

Yeast Tel1 and its highly conserved human ortholog ataxia-telangiectasia mutated (ATM) are large protein kinases central to the maintenance of genome integrity. Mutations in ATM are found in ataxia-telangiectasia (A-T) patients and ATM is one of the most frequently mutated genes in many cancers. Using cryoelectron microscopy, we present the structure of Tel1 in a nucleotide-bound state. Our structure reveals molecular details of key residues surrounding the nucleotide binding site and provides a structural and molecular basis for its intrinsically low basal activity. We show that the catalytic residues are in a productive conformation for catalysis, but the phosphatidylinositol 3-kinase-related kinase (PIKK) regulatory domain insert restricts peptide substrate access and the N-lobe is in an open conformation, thus explaining the requirement for Tel1 activation. Structural comparisons with other PIKKs suggest a conserved and common allosteric activation mechanism. Our work also provides a structural rationale for many mutations found in A-T and cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Domínio Catalítico , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química
6.
J Parasitol ; 95(3): 767, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18939898

RESUMO

Cases of visceral leishmaniasis, one of the most neglected tropical diseases, are increasing globally. Dogs are considered an important reservoir host for visceral leishmaniasis in people. The first cases of human visceral leishmaniasis in Vietnam have recently been reported. Blood samples were collected from 41 dogs in rural Vietnam. Sera were examined for antibodies to visceralizing Leishmania spp. by canine immunochromatographic strip assays based on recombinant K39 antigen. Antibodies to Leishmania spp. were not detected in any of the dogs tested. Results from this study suggest that rural dogs are not likely to be involved in the emergence of human visceral leishmaniasis in Vietnam.


Assuntos
Anticorpos Antiprotozoários/sangue , Reservatórios de Doenças , Doenças do Cão/epidemiologia , Leishmania/imunologia , Leishmaniose Visceral/veterinária , Animais , Reservatórios de Doenças/parasitologia , Doenças do Cão/imunologia , Cães , Feminino , Humanos , Técnicas Imunológicas/veterinária , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Masculino , Saúde da População Rural , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa