Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 13: 109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565907

RESUMO

BACKGROUND: Under nitrogen deficiency situation, Nannochloropsis spp. accumulate large amounts of lipids in the form of triacylglycerides (TAG). Mechanisms of this process from the perspective of transcriptome and metabolome have been obtained previously, yet proteome analysis is still sparse which hinders the analysis of dynamic adaption to nitrogen deficiency. Here, proteomes for 3 h, 6 h, 12 h, 24 h, 48 h and 10th day of nitrogen deplete (N-) and replete (N+) conditions were obtained and integrated with previous transcriptome data for N. oceanica. RESULTS: Physiological adaptations to N- not apparent from transcriptome data were unveiled: (a) abundance of proteins related to photosynthesis only slightly decreased in the first 48 h, indicating that photosynthesis is still working efficiently, and protein amounts adjust gradually with reduction in chloroplast size. (b) Most proteins related to the TCA cycle were strongly upregulated after 48 h under N-, suggesting that respiration is enhanced after 48 h and that TCA cycle efflux supports the carbon required for lipid synthesis. (c) Proteins related to lipid accumulation via the Kennedy pathway increased their abundance at 48 h, synchronous with the previously reported diversification of fatty acids after 48 h. CONCLUSIONS: This study adds a proteome perspective on the major pathways for TAG accumulation in Nannochloropsis spp. Temporal changes of proteome exhibited distinct adaptation phases that are usually delayed relative to transcriptomic responses. Notably, proteome data revealed that photosynthesis and carbon fixation are still ongoing even after 48 h of N-. Moreover, sometimes completely opposite trends in proteome and transcriptome demonstrate the relevance of underexplored post-transcriptional regulation for N- adaptation.

2.
Sci Data ; 7(1): 215, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636389

RESUMO

Society's demand for metals is ever increasing while stocks of high-grade minerals are being depleted. Biomining, for example of chalcopyrite for copper recovery, is a more sustainable biotechnological process that exploits the capacity of acidophilic microbes to catalyze solid metal sulfide dissolution to soluble metal sulfates. A key early stage in biomining is cell attachment and biofilm formation on the mineral surface that results in elevated mineral oxidation rates. Industrial biomining of chalcopyrite is typically carried out in large scale heaps that suffer from the downsides of slow and poor metal recoveries. In an effort to mitigate these drawbacks, this study investigated planktonic and biofilm cells of acidophilic (optimal growth pH < 3) biomining bacteria. RNA and proteins were extracted, and high throughput "omics" performed from a total of 80 biomining experiments. In addition, micrographs of biofilm formation on the chalcopyrite mineral surface over time were generated from eight separate experiments. The dataset generated in this project will be of great use to microbiologists, biotechnologists, and industrial researchers.


Assuntos
Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Metais/isolamento & purificação , Biologia de Sistemas , Ácidos/química , Proteínas de Bactérias/genética , Cobre/isolamento & purificação , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa