Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Proteome Res ; 23(1): 71-83, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38112105

RESUMO

Tyrosine sulfation in the Golgi of secreted and membrane proteins is an important post-translational modification (PTM). However, its labile nature has limited analysis by mass spectrometry (MS), a major reason why no sulfoproteome studies have been previously reported. Here, we show that a phosphoproteomics experimental workflow, which includes serial enrichment followed by high resolution, high mass accuracy MS, and tandem MS (MS/MS) analysis, enables sulfopeptide coenrichment and identification via accurate precursor ion mass shift open MSFragger database search. This approach, supported by manual validation, allows the confident identification of sulfotyrosine-containing peptides in the presence of high levels of phosphorylated peptides, thus enabling these two sterically and ionically similar isobaric PTMs to be distinguished and annotated in a single proteomic analysis. We applied this approach to isolated interphase and mitotic rat liver Golgi membranes and identified 67 tyrosine sulfopeptides, corresponding to 26 different proteins. This work discovered 23 new sulfoproteins with functions related to, for example, Ca2+-binding, glycan biosynthesis, and exocytosis. In addition, we report the first preliminary evidence for crosstalk between sulfation and phosphorylation in the Golgi, with implications for functional control.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Peptídeos/química , Tirosina/metabolismo , Processamento de Proteína Pós-Traducional
2.
J Proteome Res ; 23(7): 2386-2396, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38900499

RESUMO

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.


Assuntos
Fibrinogênio , Espectrometria de Massas em Tandem , Tirosina , Tirosina/química , Tirosina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Fibrinogênio/química , Fibrinogênio/metabolismo , Cromatografia Líquida/métodos , Humanos , Processamento de Proteína Pós-Traducional , Tripsina/química , Tripsina/metabolismo , Sulfatos/química , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/análise , Elétrons
3.
Anal Chem ; 96(21): 8800-8806, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742421

RESUMO

Negative-ion electron capture dissociation (niECD) is an anion MS/MS technique that provides fragmentation analogous to conventional ECD, including high peptide sequence coverage and retention of labile post-translational modifications (PTMs). niECD has been proposed to be the most efficient for salt-bridged zwitterionic precursor ion structures. Several important PTMs, e.g., sulfation and phosphorylation, are acidic and can, therefore, be challenging to characterize in the positive-ion mode. Furthermore, PTM-friendly techniques, such as ECD, require multiple precursor ion-positive charges. By contrast, singly charged ions, refractory to ECD, are most compatible with niECD. Because electrospray ionization (ESI) typically yields multiply charged ions, we sought to explore matrix-assisted laser desorption/ionization (MALDI) in combination with niECD. However, the requirement for zwitterionic gaseous structures may preclude efficient niECD of MALDI-generated anions. Unexpectedly, we found that niECD of anions from MALDI is not only possible but proceeds with similar or higher efficiency compared with ESI-generated anions. Matrix selection did not appear to have a major effect. With MALDI, niECD is demonstrated up to m/z ∼4300. For such larger analytes, multiple electron captures are observed, resulting in triply charged fragments from singly charged precursor ions. Such charge-increased fragments show improved detectability. Furthermore, significantly improved (∼20-fold signal-to-noise increase) niECD spectral quality is achieved with equivalent sample amounts from MALDI vs ESI. Overall, the reported combination with MALDI significantly boosts the analytical utility of niECD.


Assuntos
Ânions , Elétrons , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ânions/química , Peptídeos/química , Peptídeos/análise , Sequência de Aminoácidos
4.
Nature ; 510(7506): 512-7, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965652

RESUMO

Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/ultraestrutura , Streptomyces/enzimologia , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Ácido Graxo Sintases/química , Macrolídeos/metabolismo , Modelos Moleculares , Policetídeo Sintases/metabolismo
5.
Nature ; 510(7506): 560-4, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965656

RESUMO

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the ß-keto intermediate, and after ß-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.


Assuntos
Biocatálise , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Streptomyces/enzimologia , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/ultraestrutura , Aciltransferases/química , Aciltransferases/metabolismo , Aciltransferases/ultraestrutura , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , Macrolídeos/metabolismo , Modelos Moleculares , Policetídeo Sintases/ultraestrutura , Estrutura Terciária de Proteína
6.
Anal Chem ; 90(16): 9682-9686, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30063332

RESUMO

Tandem mass spectrometry (MS/MS) is the primary method for discovering, identifying, and localizing post-translational modifications (PTMs) in proteins. However, conventional positive ion mode collision induced dissociation (CID)-based MS/MS often fails to yield site-specific information for labile and acidic modifications due to low ionization efficiency in positive ion mode and/or preferential PTM loss. While a number of alternative methods have been developed to address this issue, most require specialized instrumentation or indirect detection. In this work, we present an amine-reactive TEMPO-based free radical initiated peptide sequencing (FRIPS) approach for negative ion mode analysis of phosphorylated and sulfated peptides. FRIPS-based fragmentation generates sequence informative ions for both phosphorylated and sulfated peptides with no significant PTM loss. Furthermore, FRIPS is compared to positive ion mode CID, electron transfer dissociation (ETD), as well as negative ion mode electron capture dissociation (niECD) and CID, both in terms of sequence coverage and fragmentation efficiency for phospho- and sulfo-peptides. Because FRIPS-based fragmentation has no particular instrumentation requirements and shows limited PTM loss, we propose this approach as a promising alternative to current techniques for analysis of labile and acidic PTMs.


Assuntos
Radicais Livres/química , Oligopeptídeos/análise , Fosfopeptídeos/análise , Colecistocinina/análise , Colecistocinina/química , Hirudinas/análise , Hirudinas/química , Oligopeptídeos/química , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem/métodos
7.
Anal Chem ; 89(19): 10188-10193, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28841300

RESUMO

Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.


Assuntos
Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Trifluoretanol/química , Cromatografia Líquida de Alta Pressão , Íons/química , Peptídeos/análise , Água/química
8.
Anal Chem ; 89(16): 8304-8310, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708386

RESUMO

Protein S-sulfinylation (R-SO2-) and S-sulfonylation (R-SO3-) are irreversible oxidative post-translational modifications of cysteine residues. Greater than 5% of cysteines are reported to occupy these higher oxidation states, which effectively inactivate the corresponding thiols and alter the electronic and physical properties of modified proteins. Such higher oxidation states are reached after excessive exposure to cellular oxidants, and accumulate across different disease states. Despite widespread and functionally relevant cysteine oxidation across the proteome, there are currently no robust methods to profile higher order cysteine oxidation. Traditional data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods generally miss low-occupancy modifications in complex analyses. Here, we present a data-independent acquisition (DIA) LC/MS-based approach, leveraging the high IR absorbance of sulfoxides at 10.6 µm, for selective dissociation and discovery of S-sulfonated peptides. Across peptide standards and protein digests, we demonstrate selective infrared multiphoton dissociation (IRMPD) of S-sulfonated peptides in the background of unmodified peptides. This selective DIA IRMPD LC/MS-based approach allows identification and annotation of S-sulfonated peptides across complex mixtures while providing sufficient sequence information to localize the modification site.


Assuntos
Cisteína/análogos & derivados , Peptídeos/química , Cisteína/química , Cisteína/efeitos da radiação , Raios Infravermelhos , Espectrometria de Massas/métodos , Oxirredução , Peptídeos/metabolismo , Peptídeos/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação
9.
Nature ; 459(7247): 731-5, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19494914

RESUMO

Natural product chemical diversity is fuelled by the emergence and ongoing evolution of biosynthetic pathways in secondary metabolism. However, co-evolution of enzymes for metabolic diversification is not well understood, especially at the biochemical level. Here, two parallel assemblies with an extraordinarily high sequence identity from Lyngbya majuscula form a beta-branched cyclopropane in the curacin A pathway (Cur), and a vinyl chloride group in the jamaicamide pathway (Jam). The components include a halogenase, a 3-hydroxy-3-methylglutaryl enzyme cassette for polyketide beta-branching, and an enoyl reductase domain. The halogenase from CurA, and the dehydratases (ECH(1)s), decarboxylases (ECH(2)s) and enoyl reductase domains from both Cur and Jam, were assessed biochemically to determine the mechanisms of cyclopropane and vinyl chloride formation. Unexpectedly, the polyketide beta-branching pathway was modified by introduction of a gamma-chlorination step on (S)-3-hydroxy-3-methylglutaryl mediated by Cur halogenase, a non-haem Fe(ii), alpha-ketoglutarate-dependent enzyme. In a divergent scheme, Cur ECH(2) was found to catalyse formation of the alpha,beta enoyl thioester, whereas Jam ECH(2) formed a vinyl chloride moiety by selectively generating the corresponding beta,gamma enoyl thioester of the 3-methyl-4-chloroglutaconyl decarboxylation product. Finally, the enoyl reductase domain of CurF specifically catalysed an unprecedented cyclopropanation on the chlorinated product of Cur ECH(2) instead of the canonical alpha,beta C = C saturation reaction. Thus, the combination of chlorination and polyketide beta-branching, coupled with mechanistic diversification of ECH(2) and enoyl reductase, leads to the formation of cyclopropane and vinyl chloride moieties. These results reveal a parallel interplay of evolutionary events in multienzyme systems leading to functional group diversity in secondary metabolites.


Assuntos
Cianobactérias/enzimologia , Ciclopropanos/metabolismo , Enzimas/biossíntese , Enzimas/química , Enzimas/metabolismo , Evolução Molecular , Halogenação , Tiazóis/metabolismo , Cloreto de Vinil/metabolismo
10.
J Am Soc Mass Spectrom ; 35(4): 784-792, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38489759

RESUMO

We previously discovered that electron attachment to gaseous peptide anions can occur within a relatively narrow electron energy range. The resulting charge-increased radical ions undergo dissociation analogous to conventional cation electron capture/transfer dissociation (ECD/ETD), thus enabling a novel tandem mass spectrometry (MS/MS) technique that we termed negative ion electron capture dissociation (niECD). We proposed that gaseous zwitterionic structures are required for niECD with electron capture either occurring at or being directed by a positively charged site. Here, we further evaluate this zwitterion mechanism by performing niECD of peptides derivatized to alter their ability to form zwitterionic gaseous structures. Introduction of a fixed positive charge tag, a highly basic guanidino group, or a highly acidic sulfonate group to promote zwitterionic structures in singly charged anions, rescued the niECD ability of a peptide refractory to niECD in its unmodified form. We also performed a systematic study of five sets of synthetic peptides with decreasing zwitterion propensity and found that niECD efficiency decreased accordingly, further supporting the zwitterion mechanism. However, traveling-wave ion mobility-mass spectrometry experiments, performed to gain further insight into the gas-phase structures of peptides showing high niECD efficiency, exhibited an inverse correlation between the orientationally averaged collision cross sections and niECD efficiency. These results indicate that compact salt-bridged structures are also a requirement for effective niECD.


Assuntos
Gases , Espectrometria de Massas em Tandem , Gases/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Ânions/química , Peptídeos/química , Cátions , Cloreto de Sódio
11.
Proc Natl Acad Sci U S A ; 107(32): 14099-104, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660778

RESUMO

The CurA halogenase (Hal) catalyzes a cryptic chlorination leading to cyclopropane ring formation in the synthesis of the natural product curacin A. Hal belongs to a family of enzymes that use Fe(2+), O(2) and alpha-ketoglutarate (alphaKG) to perform a variety of halogenation reactions in natural product biosynthesis. Crystal structures of the enzyme in five ligand states reveal strikingly different open and closed conformations dependent on alphaKG binding. The open form represents ligand-free enzyme, preventing substrate from entering the active site until both alphaKG and chloride are bound, while the closed form represents the holoenzyme with alphaKG and chloride coordinated to iron. Candidate amino acid residues involved in substrate recognition were identified by site-directed mutagenesis. These new structures provide direct evidence of a conformational switch driven by alphaKG leading to chlorination of an early pathway intermediate.


Assuntos
Ciclopropanos/metabolismo , Ácidos Cetoglutáricos/química , Oxirredutases/química , Tiazóis/metabolismo , Cristalografia por Raios X , Halogenação , Ferro/química , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato/genética
12.
Anal Chem ; 84(2): 871-6, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22175525

RESUMO

In top-down proteomics, intact gaseous proteins are fragmented in a mass spectrometer by, e.g., electron capture dissociation (ECD) to obtain structural information. By far, most top-down approaches involve dissociation of protein cations. However, in electrospray ionization of phosphoproteins, the high acidity of phosphate may contribute to the formation of intramolecular hydrogen bonds or salt bridges, which influence subsequent fragmentation behavior. Other acidic proteins or proteins with regions containing multiple acidic residues may also be affected similarly. Negative ion mode, on the other hand, may enhance deprotonation and unfolding of multiply phosphorylated or highly acidic protein regions. Here, activated ion electron detachment dissociation (AI-EDD) and negative ion infrared multiphoton dissociation (IRMPD) were employed to investigate the fragmentation of intact proteins, including multiply phosphorylated ß-casein, calmodulin, and glycosylated ribonuclease B. Compared to AI-ECD and positive ion IRMPD, AI-EDD and negative ion IRMPD provide complementary protein sequence information, particularly in regions with high acidity, including the multiply phosphorylated region of ß-casein.


Assuntos
Calmodulina/química , Caseínas/química , Elétrons , Ribonucleases/química , Espectrometria de Massas por Ionização por Electrospray , Sequência de Aminoácidos , Glicosilação , Humanos , Dados de Sequência Molecular , Fosforilação
13.
Anal Chem ; 84(15): 6370-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22770115

RESUMO

Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the corresponding modified sulfopeptides for diagnostic sulfonate loss. This indirect method relies upon specific and complete derivatization of nonsulfonated tyrosines. Alternative MS/MS activation methods, including positive ion metastable atom-activated dissociation (MAD) and metal-assisted electron transfer dissociation (ETD) or electron capture dissociation (ECD) provide varying degrees of sulfonate retention. Sulfonate retention has also been reported following negative ion MAD and electron detachment dissociation (EDD), which also operates in negative ion mode in which sulfonate groups are less labile than in positive ion mode. However, an MS/MS activation technique that can effectively preserve sulfonate groups while providing extensive backbone fragmentation (translating to sequence information, including sulfonated sites) with little to no noninformative small molecule neutral loss has not previously been realized. Here, we report that negative ion CAD, EDD, and negative ETD (NETD) result in sulfonate retention mainly at higher charge states with varying degrees of fragmentation efficiency and sequence coverage. Similar to previous observations from CAD of sulfonated glycosaminoglycan anions, higher charge states translate to a higher probability of deprotonation at the sulfonate groups thus yielding charge-localized fragmentation without loss of the sulfonate groups. However, consequently, higher sulfonate retention comes at the price of lower sequence coverage in negative ion CAD. Fragmentation efficiency/sequence coverage averaged 19/6% and 33/20% in EDD and NETD, respectively, both of which are only applicable to multiply-charged anions. In contrast, the recently introduced negative ion ECD showed an average fragmentation efficiency of 69% and an average sequence coverage of 82% with complete sulfonate retention from singly- and doubly-deprotonated sulfopeptide anions.


Assuntos
Peptídeos/análise , Ácidos Sulfônicos/química , Espectrometria de Massas em Tandem , Ânions/química , Colecistocinina/química , Colecistocinina/metabolismo , Transporte de Elétrons , Elétrons
14.
J Am Chem Soc ; 133(42): 16790-3, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21942568

RESUMO

The generation of gaseous polyanions with a Coulomb barrier has attracted attention as exemplified by previous studies of fullerene dianions. However, this phenomenon has not been reported for biological anions. By contrast, electron attachment to multiply charged peptide and protein cations has seen a surge of interest due to the high utility for tandem mass spectrometry (MS/MS). Electron capture dissociation (ECD) and electron transfer dissociation (ETD) involve radical-driven fragmentation of charge-reduced peptide/protein cations to yield N-C(α) backbone bond cleavage, resulting in predictable c'/z(•)-type product ions without loss of labile post-translational modifications (PTMs). However, acidic peptides, e.g., with biologically important PTMs such as phosphorylation and sulfonation, are difficult to multiply charge in positive ion mode and show improved ionization in negative-ion mode. We found that peptide anions ([M - nH](n-), n ≥ 1) can capture electrons within a rather narrow energy range (~3.5-6.5 eV), resulting in charge-increased radical intermediates that undergo dissociation analogous to that in ECD/ETD. Gas-phase zwitterionic structures appear to play an important role in this novel MS/MS technique, negative-ion electron capture dissociation (niECD).


Assuntos
Elétrons , Gases/química , Peptídeos/química , Ânions/química , Radicais Livres
15.
J Am Chem Soc ; 133(37): 14492-5, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21823639

RESUMO

Cryptophycins (Crp) are a group of cyanobacterial depsipeptides with activity against drug-resistant tumors. Although they have been shown to be promising, further efforts are required to return these highly potent compounds to the clinic through a new generation of analogues with improved medicinal properties. Herein, we report a chemosynthetic route relying on the multifunctional enzyme CrpD-M2 that incorporates a 2-hydroxy acid moiety (unit D) into Crp analogues. CrpD-M2 is a unique non-ribosomal peptide synthetase (NRPS) module comprised of condensation-adenylation-ketoreduction-thiolation (C-A-KR-T) domains. We interrogated A-domain 2-keto and 2-hydroxy acid activation and loading, and KR domain activity in the presence of NADPH and NADH. The resulting 2-hydroxy acid was elongated with three synthetic Crp chain elongation intermediate analogues through ester bond formation catalyzed by CrpD-M2 C domain. Finally, the enzyme-bound seco-Crp products were macrolactonized by the Crp thioesterase. Analysis of these sequential steps was enabled through LC-FTICR-MS of enzyme-bound intermediates and products. This novel chemoenzymatic synthesis of Crp involves four sequential catalytic steps leading to the incorporation of a 2-hydroxy acid moiety in the final chain elongation intermediate. The presented work constitutes the first example where a NRPS-embedded KR domain is employed for assembly of a fully elaborated natural product, and serves as a proof-of-principle for chemoenzymatic synthesis of new Crp analogues.


Assuntos
Antineoplásicos/metabolismo , Cianobactérias/enzimologia , Depsipeptídeos/metabolismo , Peptídeo Sintases/metabolismo , Antineoplásicos/síntese química , Cianobactérias/genética , Depsipeptídeos/síntese química , Escherichia coli/genética , Expressão Gênica , Peptídeo Sintases/genética
16.
Anal Chem ; 83(4): 1275-83, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21261267

RESUMO

Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.


Assuntos
Fosfolipídeos/química , Prata/química , Espectrometria de Massas em Tandem , Cobre/química , Esterificação , Prótons , Estereoisomerismo
17.
Electrophoresis ; 32(24): 3526-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22120881

RESUMO

We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag.


Assuntos
Corantes Fluorescentes/química , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Análise de Fourier , Humanos , Ácido N-Acetilneuramínico/química , Oligossacarídeos/análise , Transferrina/química , ortoaminobenzoatos/química
18.
Curr Proteomics ; 8(4): 297-308, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22389641

RESUMO

Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins.

19.
J Bacteriol ; 192(8): 2044-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154134

RESUMO

Antimicrobial peptides are critical for innate antibacterial defense. Both Gram-negative and Gram-positive microbes have mechanisms to alter their surfaces and resist killing by antimicrobial peptides. In Vibrio cholerae, two natural epidemic biotypes, classical and El Tor, exhibit distinct phenotypes with respect to sensitivity to the peptide antibiotic polymyxin B: classical strains are sensitive and El Tor strains are relatively resistant. We carried out mutant screens of both biotypes, aiming to identify classical V. cholerae mutants resistant to polymyxin B and El Tor V. cholerae mutants sensitive to polymyxin B. Insertions in a gene annotated msbB (encoding a predicted lipid A secondary acyltransferase) answered both screens, implicating its activity in antimicrobial peptide resistance of V. cholerae. Analysis of a defined mutation in the El Tor biotype demonstrated that msbB is required for resistance to all antimicrobial peptides tested. Mutation of msbB in a classical strain resulted in reduced resistance to several antimicrobial peptides but in no significant change in resistance to polymyxin B. msbB mutants of both biotypes showed decreased colonization of infant mice, with a more pronounced defect observed for the El Tor mutant. Mass spectrometry analysis showed that lipid A of the msbB mutant for both biotypes was underacylated compared to lipid A of the wild-type isolates, confirming that MsbB is a functional acyltransferase in V. cholerae.


Assuntos
Aciltransferases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Lipídeo A/metabolismo , Polimixina B/farmacologia , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Acilação/genética , Acilação/fisiologia , Aciltransferases/genética , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Farmacorresistência Bacteriana/genética , Humanos , Espectrometria de Massas , Camundongos , Vibrio cholerae/genética
20.
Biochemistry ; 49(14): 3168-73, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20225826

RESUMO

Hydrogen atom transfer reactions between the substrate and coenzyme are key mechanistic features of all adenosylcobalamin-dependent enzymes. For one of these enzymes, glutamate mutase, we have investigated whether hydrogen tunneling makes a significant contribution to the mechanism by examining the temperature dependence of the deuterium kinetic isotope effect associated with the transfer of a hydrogen atom from methylaspartate to the coenzyme. To do this, we designed a novel intramolecular competition experiment that allowed us to measure the intrinsic kinetic isotope effect, even though hydrogen transfer may not be rate-determining. From the Arrhenius plot of the kinetic isotope effect, the ratio of the pre-exponential factors (A(H)/A(D)) was 0.17 +/- 0.04 and the isotope effect on the activation energy [DeltaE(a(D-H))] was 1.94 +/- 0.13 kcal/mol. The results imply that a significant degree of hydrogen tunneling occurs in glutamate mutase, even though the intrinsic kinetic isotope effects are well within the semiclassical limit and are much smaller than those measured for other AdoCbl enzymes and model reactions for which hydrogen tunneling has been implicated.


Assuntos
Cobamidas/química , Hidrogênio/química , Transferases Intramoleculares/química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Desoxiadenosinas/química , Deutério , Cinética , Modelos Moleculares , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa