Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Biol ; 20(1): 182, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986286

RESUMO

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Assuntos
Doença de Crohn , Inibidores do Fator de Necrose Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Citocinas/genética , Citocinas/metabolismo , Epigênese Genética , Humanos , Macrófagos , Fatores de Transcrição/genética
2.
J Neuroinflammation ; 19(1): 155, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715845

RESUMO

BACKGROUND: Vagus nerve stimulation has been suggested to affect immune responses, partly through a neuronal circuit requiring sympathetic innervation of the splenic nerve bundle and norepinephrine (NE) release. Molecular and cellular mechanisms of action remain elusive. Here, we investigated the therapeutic value of this neuromodulation in inflammatory bowel disease (IBD) by applying electrical splenic nerve bundle stimulation (SpNS) in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS: Cuff electrodes were implanted around the splenic nerve bundle in mice, whereupon mice received SpNS or sham stimulation. Stimulation was applied 6 times daily for 12 days during DSS-induced colitis. Colonic and splenic tissues were collected for transcriptional analyses by qPCR and RNA-sequencing (RNA-seq). In addition, murine and human splenocytes were stimulated with lipopolysaccharide (LPS) in the absence or presence of NE. Single-cell RNA-seq data from publicly available data sets were analyzed for expression of ß-adrenergic receptors (ß-ARs). RESULTS: Colitic mice undergoing SpNS displayed reduced colon weight/length ratios and showed improved Disease Activity Index scores with reduced Tumor Necrosis Factor α mRNA expression in the colon compared with sham stimulated mice. Analyses of splenocytes from SpNS mice using RNA-seq demonstrated specific immune metabolism transcriptome profile changes in myeloid cells. Splenocytes showed expression of ß-ARs in myeloid and T cells. Cytokine production was reduced by NE in mouse and human LPS-stimulated splenocytes. CONCLUSIONS: Together, our results demonstrate that SpNS reduces clinical features of colonic inflammation in mice with DSS-induced colitis possibly by inhibiting splenic myeloid cell activation. Our data further support exploration of the clinical use of SpNS for patients with IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/terapia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/terapia , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
3.
Int J Med Sci ; 19(12): 1806-1815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313224

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Previously, we showed the anticancer effects of Thai herbal plant extract, Dioscorea membranacea Pierre (DM), in HCC-bearing rats. In the present study, we further examined the proposed mechanism of DM, including apoptosis and antioxidant activity. Moreover, we used RNA sequencing (RNA-seq) to analyze molecular pathways in the rat model in which HCC was induced by diethylnitrosamine (DEN) and thioacetamide (TAA). The HCC-bearing rats were then treated with 40 mg/kg of DM for 8 weeks, after which experimental and control rats were sacrificed and liver tissues were collected. The RNA-seq data of DEN/TAA-treated rats exhibited upregulation of 16 hallmark pathways, including epithelial mesenchymal transition, inflammatory responses, and angiogenesis (p<0.01). DM extract expanded the Bax protein-positive pericentral zone in the tumor areas and decreased hepatic malondialdehyde levels, implying a decrease in lipid peroxidation in liver. However, DM treatment did not ameliorate the molecular pathways induced in DEN/TAA-treated livers. Our findings indicate that DM extract has antioxidant activity and exerts its pro-apoptotic effect on rat HCCs in vivo at the (post-)translational level.


Assuntos
Carcinoma Hepatocelular , Dioscorea , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Tioacetamida/toxicidade , Tioacetamida/metabolismo , Dietilnitrosamina/toxicidade , Dietilnitrosamina/metabolismo , Dioscorea/metabolismo , Antioxidantes/farmacologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Fígado/patologia , Extratos Vegetais/efeitos adversos
4.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948271

RESUMO

Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.


Assuntos
Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Modelos Biológicos , Linhagem Celular , Microbioma Gastrointestinal/fisiologia , Humanos , Intestinos/fisiologia , Organoides
5.
Hepatology ; 65(1): 281-293, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641632

RESUMO

Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that ∼35% of this ammonia is detoxified by hepatic GS and ∼35% by urea-cycle enzymes, while ∼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is ∼160 µmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from ∼7% in methionine sulfoximine-treated mice to ∼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. CONCLUSIONS: Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on glutamine synthesis, we hypothesize that glutamate dehydrogenase complements mitochondrial ammonia production. (Hepatology 2017;65:281-293).


Assuntos
Amônia/metabolismo , Glutamato-Amônia Ligase/fisiologia , Animais , Bicarbonatos/metabolismo , Glutamina/metabolismo , Inativação Metabólica , Fígado/metabolismo , Camundongos
6.
Dev Biol ; 396(2): 201-13, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446530

RESUMO

UNLABELLED: Notch signaling plays an acknowledged role in bile-duct development, but its involvement in cholangiocyte-fate determination remains incompletely understood. We investigated the effects of early Notch2 deletion in Notch2(fl/fl)/Alfp-Cre(tg/-) ("Notch2-cKO") and Notch2(fl/fl)/Alfp-Cre(-/-) ("control") mice. Fetal and neonatal Notch2-cKO livers were devoid of cytokeratin19 (CK19)-, Dolichos-biflorus agglutinin (DBA)-, and SOX9-positive ductal structures, demonstrating absence of prenatal cholangiocyte differentiation. Despite extensive cholestatic hepatocyte necrosis and growth retardation, mortality was only ~15%. Unexpectedly, a slow process of secondary cholangiocyte differentiation and bile-duct formation was initiated around weaning that histologically resembled the ductular reaction. Newly formed ducts varied from rare and non-connected, to multiple, disorganized tubular structures that connected to the extrahepatic bile ducts. Jaundice had disappeared in ~30% of Notch2-cKO mice by 6 months. The absence of NOTCH2 protein in postnatally differentiating cholangiocyte nuclei of Notch2-cKO mice showed that these cells had not originated from non-recombined precursor cells. Notch2 and Hnf6 mRNA levels were permanently decreased in Notch2-cKO livers. Perinatally, Foxa1, Foxa2, Hhex, Hnf1ß, Cebpα and Sox9 mRNA levels were all significantly lower in Notch2-cKO than control mice, but all except Foxa2 returned to normal or increased levels after weaning, coincident with the observed secondary bile-duct formation. Interestingly, Hhex and Sox9 mRNA levels remained elevated in icteric 6 months old Notch2-cKOs, but decreased to control levels in non-icteric Notch2-cKOs, implying a key role in secondary bile-duct formation. CONCLUSION: Cholangiocyte differentiation becomes progressively less dependent on NOTCH2 signaling with age, suggesting that ductal-plate formation is dependent on NOTCH2, but subsequent cholangiocyte differentiation is not.


Assuntos
Ductos Biliares/anormalidades , Ductos Biliares/crescimento & desenvolvimento , Fígado/metabolismo , Organogênese/genética , Receptor Notch2/deficiência , Análise de Variância , Animais , Primers do DNA/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Técnicas Histológicas , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Organogênese/fisiologia , Reação em Cadeia da Polimerase , Análise de Regressão , Desmame
7.
Hepatology ; 69(2): 922-923, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232480
8.
Biochim Biophys Acta ; 1832(5): 685-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23410526

RESUMO

UNLABELLED: The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)(2) diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or HP diets for 3weeks. To control for reduced energy intake by HF/HP-fed mice, a pair-fed HF/LP group was included. Reversibility of pre-existing steatosis was investigated by sequentially feeding HF/LP and HF/HP diets. HP-containing diets decreased hepatic lipids to ~40% of corresponding LP-containing diets, were more efficient in this respect than reducing energy intake to 80%, and reversed pre-existing diet-induced steatosis. Compared to LP-containing diets, mice fed HP-containing diets showed increased mitochondrial oxidative capacity (elevated Pgc1α, mAco, and Cpt1 mRNAs, complex-V protein, and decreased plasma free and short-chain acyl-carnitines, and [C0]/[C16+C18] carnitine ratio); increased gluconeogenesis and pyruvate cycling (increased PCK1 protein and fed plasma-glucose concentration without increased G6pase mRNA); reduced fatty-acid desaturation (decreased Scd1 expression and [C16:1n-7]/[C16:0] ratio) and increased long-chain PUFA elongation; a selective increase in plasma branched-chain amino acids; a decrease in cell stress (reduced phosphorylated eIF2α, and Fgf21 and Chop expression); and a trend toward less inflammation (lower Mcp1 and Cd11b expression and less phosphorylated NFκB). CONCLUSION: HP diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake. The effect appears to result from fuel-generated, highly distributed small, synergistic increases in lipid and BCAA catabolism, and a decrease in cell stress.


Assuntos
Proteínas Alimentares/farmacologia , Fígado Gorduroso/prevenção & controle , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Aminoácidos/sangue , Animais , Glicemia/metabolismo , Western Blotting , Colesterol/sangue , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Proteínas Alimentares/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
9.
J Transl Med ; 12: 325, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25432364

RESUMO

BACKGROUND: Acute, high-dose folic acid (FA) administration has recently been shown to possess unprecedented effective cardioprotection against ischaemia/reperfusion (I/R) injury. Here we explore the translation potential of FA as treatment modality for cardiac I/R. METHODS: Dependency of FA protection on dose, ischaemia duration, and eNOS was examined in an isolated mouse heart I/R model, whereas dependency on animal health status and anaesthesia was examined in an in vivo rat model of regional cardiac I/R. RESULTS: 50 µM FA provided maximal reduction (by 95%) of I/R-induced cell death following 25 min ischaemia in isolated wild-type hearts, with protection associated with increased coupled eNOS protein. No protection was observed with 35 min I or in eNOS(-/-) hearts. Acute intravenous administration of FA during a 25 min ischaemic period reduced infarct size by 45% in in vivo pentobarbital-anaesthetised young, healthy rats. FA did not reduce infarct size in aged or pre-diabetic rats, although it did preserve hemodynamics in the pre-diabetic rats. Finally, using a clinically-relevant anaesthetic regimen of fentanyl-propofol anaesthesia, FA treatment was ineffective in young, aged and pre-diabetic animals. CONCLUSIONS: The protective potential of an initially promising cardioprotective treatment of high dose FA against cardiac I/R infarction, is critically dependent on experimental conditions with relevance to the clinical condition. Our data indicates the necessity of expanded pre-clinical testing of cardioprotective interventions before embarking on clinical testing, in order to prevent too many "lost-in-translation" drugs and unnecessary clinical studies.


Assuntos
Anestésicos/administração & dosagem , Cardiotônicos/uso terapêutico , Ácido Fólico/administração & dosagem , Nível de Saúde , Animais , Cardiotônicos/administração & dosagem , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Ratos
10.
J Biol Chem ; 287(44): 37483-94, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22869374

RESUMO

Ciliopathies, a class of rare genetic disorders, present often with retinal degeneration caused by protein transport defects between the inner segment and the outer segment of the photoreceptors. Bardet-Biedl syndrome is one such ciliopathy, genetically heterogeneous with 17 BBS genes identified to date, presenting early onset retinitis pigmentosa. By investigating BBS12-deprived retinal explants and the Bbs12(-/-) murine model, we show that the impaired intraciliary transport results in protein retention in the endoplasmic reticulum. The protein overload activates a proapoptotic unfolded protein response leading to a specific Caspase12-mediated death of the photoreceptors. Having identified a therapeutic window in the early postnatal retinal development and through optimized pharmacological modulation of the unfolded protein response, combining three specific compounds, namely valproic acid, guanabenz, and a specific Caspase12 inhibitor, achieved efficient photoreceptor protection, thereby maintaining light detection ability in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Síndrome de Bardet-Biedl/tratamento farmacológico , Células Fotorreceptoras/efeitos dos fármacos , Retina/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Animais , Transporte Biológico , Caspase 12/metabolismo , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Chaperoninas/deficiência , Chaperoninas/genética , Cílios/metabolismo , Cílios/patologia , Citoproteção , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Guanabenzo/farmacologia , Guanabenzo/uso terapêutico , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Fotorreceptoras/enzimologia , Células Fotorreceptoras/patologia , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa