Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(3): 362-368, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36797383

RESUMO

Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.

2.
Phys Chem Chem Phys ; 25(31): 21065-21073, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525889

RESUMO

One approach for improving lithium transference in electrolytes is through the use of bulky multivalent anions. We have studied a multivalent salt containing a bulky star-shaped anion with a polyhedral oligomeric silsesquioxane (POSS) center and lithium counterions dissolved in a solvent. The charge on each anion, z-, is equal to -20. The self-diffusion coefficients of all species were measured by pulsed field gradient NMR (PFG-NMR). As expected, anion diffusion was significantly slower than cation diffusion. An approximate transference number, also referred to as the current fraction (measured by Bruce, Vincent and Watanabe method), was higher than those expected from PFG-NMR. However, the rigorously defined cation transference number with respect to the solvent velocity measured by electrophoretic NMR was negative at all salt concentrations. In contrast, the approximate transference numbers based on PFG-NMR and current fractions are always positive, as expected. The discrepancy between these three independent approaches for characterizing lithium transference suggests the presence of complex cation-anion interactions in solution. It is evident that the slow self-diffusion of bulky multivalent anions does not necessarily lead to an improvement of lithium transference.

3.
Phys Rev Lett ; 128(19): 198002, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622024

RESUMO

While electric fields primarily result in migration of charged species in electrolytic solutions, the solutions are dynamically heterogeneous. Solvent molecules within the solvation shells of the cation will be dragged by the field while free solvent molecules will not. We combine electrophoretic NMR measurements of ion and solvent velocities under applied electric fields with molecular dynamics simulations to interrogate different solvation motifs in a model liquid electrolyte. Measured values of the cation transference number (t_{+}^{0}) agree quantitatively with simulation-based predictions over a range of electrolyte concentrations. Solvent-cation interactions strongly influence the concentration-dependent behavior of t_{+}^{0}. We identify a critical concentration at which most of the solvent molecules lie within solvation shells of the cations. The dynamic heterogeneity of solvent molecules is minimized at this concentration where t_{+}^{0} is approximately equal to zero.

4.
Phys Chem Chem Phys ; 24(43): 26591-26599, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36285835

RESUMO

Improving transport properties of electrolytes is important for developing lithium-ion batteries for future energy storage applications. In Newman's concentrated solution theory, electrolytes are characterized by three transport parameters, conductivity, diffusion coefficient, and transference number, in addition to the thermodynamic factor. In this work, these parameters are all determined for an exemplar liquid electrolyte, lithium bis(trifluoromethanesulfonyl)imide mixed in tetraethylene glycol dimethyl ether, using electrochemical methods. The intrinsic coupling between parameters obtained by electrochemical methods results in large error bars in the transference number that obscure the transport behavior of the electrolyte. Here, we use electrophoretic NMR (eNMR) to measure the electric-field-induced ion and solvent velocities to obtain the transference number directly, which enables determination of the thermodynamic factor with greater certainty. Our work indicates that the combination of eNMR and electrochemical methods provides a robust approach for complete characterization of battery electrolytes.

5.
J Am Chem Soc ; 142(34): 14627-14637, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786654

RESUMO

Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal-organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate O2 uptake behavior similar to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal-organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.


Assuntos
Ferro/química , Estruturas Metalorgânicas/química , Oxigênio/química , Pirazóis/química , Temperatura , Adsorção , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
6.
J Am Chem Soc ; 142(25): 11173-11182, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32459963

RESUMO

Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications.

7.
Solid State Nucl Magn Reson ; 102: 21-30, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31226536

RESUMO

Paramagnetic solid-state NMR of lanthanide (Ln) containing materials can be challenging due to the high electron spin states possible for the Ln f electrons, which result in large paramagnetic shifts, and these difficulties are compounded for 17O due to the low natural abundance and quadrupolar character. In this work, we present examples of 17O NMR experiments for lanthanide oxides and strategies to overcome these difficulties. In particular, we record and assign the 17O NMR spectra of monoclinic Sm2O3 and Eu2O3 for the first time, as well as performing density functional theory (DFT) calculations to gain further insight into the spectra. The temperature dependence of the Sm3+ and Eu3+ magnetic susceptibilities are investigated by measuring the 17O shift of the cubic sesquioxides over a wide temperature range, which reveal non-Curie temperature dependence due to the presence of low-lying electronic states. This behaviour is reproduced by calculating the electron spin as a function of temperature, yielding shifts which agree well with the experimental values. Using the understanding of the magnetic behaviour gained from the sesquioxides, we then explore the local oxygen environments in 15 at% Sm- and Eu-substituted CeO2, with the 17O NMR spectrum exhibiting signals due to environments with zero, one and two nearest neighbour Ln ions, as well as further splitting due to oxygen vacancies. Finally, we extract an activation energy for oxygen vacancy motion in these systems of 0.35 ±â€¯0.02 eV from the Arrhenius temperature dependence of the 17O T1 relaxation constants, which is found to be independent of the Ln ion within error. The relation of this activation energy to literature values for oxygen diffusion in Ln-substituted CeO2 is discussed to infer mechanistic information which can be applied to further develop these materials as solid-state oxide-ion conductors.

8.
Chemistry ; 24(44): 11309-11313, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29920832

RESUMO

Following the recent discovery of a new family of hybrid ABX3 perovskites where X=(H2 POO)- (hypophosphite), this work reports a facile synthesis for mixed X-site formate perovskites of composition [GUA]Mn(HCOO)3-x (H2 POO)x , with two crystallographically distinct, partially ordered intermediate phases with x=0.84 and 1.53, corresponding to ca. 30 and 50 mol % hypophosphite, respectively. These phases are characterised by single-crystal XRD and solid-state NMR spectroscopy, and their magnetic properties are reported.


Assuntos
Compostos de Cálcio/química , Formiatos/química , Compostos de Manganês/química , Óxidos/química , Ácidos Fosfínicos/química , Titânio/química , Cristalografia por Raios X , Ligantes , Imãs , Modelos Moleculares , Estrutura Molecular
9.
J Am Chem Soc ; 138(30): 9405-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404908

RESUMO

Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries. After a simple (17)O enrichment procedure, we observed five resonances with large (17)O shifts ascribed to the Fermi contact interaction with directly bonded Mn(4+) ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the (17)O shifts of environments similar to the 4i and 8j sites in pristine Li2MnO3, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li2MnO3 structure. From the ratio of the intensities of the different (17)O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying (17)O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides.

10.
J Am Chem Soc ; 138(36): 11958-69, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27538437

RESUMO

While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides.

11.
Sci Adv ; 10(16): eadk2350, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640239

RESUMO

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.

12.
J Phys Chem B ; 127(8): 1803-1810, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36800550

RESUMO

Molecular-level understanding of the cation transference number t+0, an important property that characterizes the transport of working cations, is critical to the bottom-up design of battery electrolytes. We quantify t+0 in a model tetraglyme-based electrolyte using molecular dynamics simulation and the Onsager approach. t+0 exhibits a concentration dependence in three distinct regimes: dilute, intermediate, and concentrated. The cluster approximation uncovers dominant correlations and dynamic heterogeneity in each regime. In the dilute regime, t+0 decreases sharply as increasing numbers of solvent molecules become coordinated with Li+. The crossover to the intermediate regime, t+0 ≈ 0, occurs when all solvent molecules become coordinated, and a plateau is obtained because anions enter the Li+ solvation shell, resulting in ion pairs that do not contribute to t+0. Transference in concentrated electrolytes is dominated by the presence of cations in a variety of negatively charged and solvent-excluded clusters, resulting in t+0 < 0.

13.
Chem Sci ; 14(20): 5332-5339, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234910

RESUMO

Electrolytes in lithium-ion batteries comprise solvent mixtures, but analysis of ion transport is always based on treating the solvents as a single-entity. We combine electrophoretic NMR (eNMR) measurements and molecular dynamics (MD) simulations to quantify electric-field-induced transport in a concentrated solution containing LiPF6 salt dissolved in an ethylene carbonate/ethyl methyl carbonate (EC/EMC) mixture. The selective transport of EC relative to EMC is reflected in the difference between two transference numbers, defined as the fraction of current carried by cations relative to the velocity of each solvent species. This difference arises from the preferential solvation of cations by EC and its dynamic consequences. The simulations reveal the presence of a large variety of transient solvent-containing clusters which migrate at different velocities. Rigorous averaging over different solvation environments is essential for comparing simulated and measured transference numbers. Our study emphasizes the necessity of acknowledging the presence of four species in mixed-solvent electrolytes.

14.
Chem Sci ; 14(24): 6546-6557, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350831

RESUMO

Polyelectrolyte solutions (PESs) recently have been proposed as high conductivity, high lithium transference number (t+) electrolytes where the majority of the ionic current is carried by the electrochemically active Li-ion. While PESs are intuitively appealing because anchoring the anion to a polymer backbone selectively slows down anionic motion and therefore increases t+, increasing the anion charge will act as a competing effect, decreasing t+. In this work we directly measure ion mobilities in a model non-aqueous polyelectrolyte solution using electrophoretic Nuclear Magnetic Resonance Spectroscopy (eNMR) to probe these competing effects. While previous studies that rely on ideal assumptions predict that PESs will have higher t+ than monomeric solutions, we demonstrate that below the entanglement limit, both conductivity and t+ decrease with increasing degree of polymerization. For polyanions of 10 or more repeat units, at 0.5 m Li+ we directly observe Li+ move in the "wrong direction" in an electric field, evidence of a negative transference number due to correlated motion through ion clustering. This is the first experimental observation of negative transference in a non-aqueous polyelectrolyte solution. We also demonstrate that t+ increases with increasing Li+ concentration. Using Onsager transport coefficients calculated from experimental data, and insights from previously published molecular dynamics studies we demonstrate that despite selectively slowing anion motion using polyanions, distinct anion-anion correlation through the polymer backbone and cation-anion correlation through ion aggregates reduce the t+ in non-entangled PESs. This leads us to conclude that short-chained polyelectrolyte solutions are not viable high transference number electrolytes. These results emphasize the importance of understanding the effects of ion-correlations when designing new concentrated electrolytes for improved battery performance.

15.
Anal Chem ; 84(22): 9745-53, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23046116

RESUMO

Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of carbon and Ni show qualitatively different kinetics of carbon removal, and the electrochemical performance of these systems is characterized by low maximum currents and large polarization resistances.

16.
J Phys Chem B ; 126(47): 9893-9900, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383474

RESUMO

Molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and 1H NMR spectroscopy were performed to gain a complementary understanding of the concentrated Li-ion electrolyte system, lithium bis(trifluoromethanesulfonyl)imide (Li[TFSI]) dissolved in tetraglyme. The computational methods provided the concentration dependence of differing solvation structure motifs by reference to changes in the corresponding NMR spectra. By combining both the computational and experimental methodologies, we show that the various solvation structures, dominated by the coordination between the tetraglyme (G4) solvent and lithium cation, directly influence the chemical shift separation of resonances in the 1H NMR spectra of the solvent. Thus, the 1H NMR spectra can be used to predict the fraction of tetraglyme involved in the solvation process, with quantitative agreement with solvation fraction predictions from MD simulation snapshots. Overall, our results demonstrate the reliability of a hybrid computational and experimental methodology to understand the solvation structure and hence transport mechanism of LiTFSI-G4 electrolytes in the low concentration region.

17.
Sci Adv ; 8(31): eabo6849, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921416

RESUMO

Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid-stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.

18.
Chem Mater ; 32(18): 7921-7931, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32982045

RESUMO

Vertically aligned nanocomposite (VAN) films, comprising nanopillars of one phase embedded in a matrix of another, have shown great promise for a range of applications due to their high interfacial areas oriented perpendicular to the substrate. In particular, oxide VANs show enhanced oxide-ion conductivity in directions that are orthogonal to those found in more conventional thin-film heterostructures; however, the structure of the interfaces and its influence on conductivity remain unclear. In this work, 17O NMR spectroscopy is used to study CeO2-SrTiO3 VAN thin films: selective isotopic enrichment is combined with a lift-off technique to remove the substrate, facilitating detection of the 17O NMR signal from single atomic layer interfaces. By performing the isotopic enrichment at variable temperatures, the superior oxide-ion conductivity of the VAN films compared to the bulk materials is shown to arise from enhanced oxygen mobility at this interface; oxygen motion at the interface is further identified from 17O relaxometry experiments. The structure of this interface is solved by calculating the NMR parameters using density functional theory combined with random structure searching, allowing the chemistry underpinning the enhanced oxide-ion transport to be proposed. Finally, a comparison is made with 1% Gd-doped CeO2-SrTiO3 VAN films, for which greater NMR signal can be obtained due to paramagnetic relaxation enhancement, while the relative oxide-ion conductivities of the phases remain similar. These results highlight the information that can be obtained on interfacial structure and dynamics with solid-state NMR spectroscopy, in this and other nanostructured systems, our methodology being generally applicable to overcome sensitivity limitations in thin-film studies.

19.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33028517

RESUMO

Nanoporous membranes with two-dimensional materials such as graphene oxide have attracted attention in volatile organic compounds (VOCs) and H2 adsorption because of their unique molecular sieving properties and operational simplicity. However, agglomeration of graphene sheets and low efficiency remain challenging. Therefore, we designed hierarchical nanoporous membranes (HNMs), a class of nanocomposites combined with a carbon sphere and graphene oxide. Hierarchical carbon spheres, prepared following Murray's law using chemical activation incorporating microwave heating, act as spacers and adsorbents. Hierarchical carbon spheres preclude the agglomeration of graphene oxide, while graphene oxide sheets physically disperse, ensuring structural stability. The obtained HNMs contain micropores that are dominated by a combination of ultramicropores and mesopores, resulting in high VOCs/H2 adsorption capacity, up to 235 and 352 mg/g at 200 ppmv and 3.3 weight % (77 K and 1.2 bar), respectively. Our work substantially expands the potential for HNMs applications in the environmental and energy fields.

20.
Chem Commun (Camb) ; 55(84): 12687-12690, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31588461

RESUMO

We report ultra-wideline, high-field natural abundance solid-state 33S NMR spectra of the Li-ion battery conversion electrode NbS3, the first 33S NMR study of a compound containing disulfide (S22-) units. The large quadrupolar coupling parameters (CQ ≈ 31 MHz) are consistent with values obtained from DFT calculations, and the spectra provide evidence for the linear Peierls distortion that doubles the number of 33S sites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa