Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 173(3): 1030-1047, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34263457

RESUMO

Differences in root morphology and acclimation to low-phosphorus (P) soil were examined among eight legume species from the Trifolium Section Tricocephalum to understand how these root attributes determine P acquisition. Ornithopus sativus was included as a highly P-efficient benchmark species. Plants were grown as microswards in pots with five rates of P supplied in a topsoil layer to mimic uneven P distribution within a field soil profile. Topsoil and subsoil roots were harvested separately to enable measurement of the nutrient-foraging responses. Critical P requirement (lowest P supply for maximum yield) varied over a threefold range, reflecting differences in root morphology and acclimation of nutrient-foraging roots to P stress. Among the species, there was a 3.2-fold range in root length density, a 1.7-fold range in specific root length, and a 2.1-fold range in root hair length. O. sativus had the lowest critical P requirement, displayed a high root length density, the highest specific root length, and the longest root hairs. Acquisition of P from P-deficient soil was facilitated by development of a large root hair cylinder (i.e. a large root-soil interface). This, in turn, was determined by the intrinsic root morphology attributes of each genotype, and the plasticity of its root morphology response to internal P stress. Root acclimation in low-P soil by all species was mostly associated with preferential allocation of mass to nutrient-foraging roots. Only O. sativus and four of the Trifolium species adjusted specific root length beneficially, and only O. sativus increased its root hair length in low-P soil.


Assuntos
Fósforo , Trifolium , Aclimatação , Raízes de Plantas , Solo
2.
Planta ; 239(3): 643-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318401

RESUMO

Selecting plants with improved root hair growth is a key strategy for improving phosphorus-uptake efficiency in agriculture. While significant inter- and intra-specific variation is reported for root hair length, it is not known whether these phenotypic differences are exhibited under conditions that are known to affect root hair elongation. This work investigates the effect of soil strength, soil water content (SWC) and soil particle size (SPS) on the root hair length of different root hair genotypes of barley. The root hair and rhizosheath development of five root hair genotypes of barley (Hordeum vulgare L.) was compared in soils with penetrometer resistances ranging from 0.03 to 4.45 MPa (dry bulk densities 1.2-1.7 g cm(-3)). A "short" (SRH) and "long" root hair (LRH) genotype was selected to further investigate whether differentiation of these genotypes was related to SWC or SPS when grown in washed graded sand. In low-strength soil (<1.43 MPa), root hairs of the LRH genotype were on average 25 % longer than that of the SRH genotype. In high-strength soil, root hair length of the LRH genotype was shorter than that in low-strength soil and did not differ from that of the SRH genotype. Root hairs were shorter in wetter soils or soils with smaller particles, and again SRH and LRH did not differ in hair length. Longer root hairs were generally, but not always, associated with larger rhizosheaths, suggesting that mucilage adhesion was also important. The root hair growth of barley was found to be highly responsive to soil properties and this impacted on the expression of phenotypic differences in root hair length. While root hairs are an important trait for phosphorus acquisition in dense soils, the results highlight the importance of selecting multiple and potentially robust root traits to improve resource acquisition in agricultural systems.


Assuntos
Hordeum/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solo , Hordeum/genética , Tamanho da Partícula , Porosidade , Água/fisiologia
3.
J Exp Bot ; 64(12): 3711-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861547

RESUMO

Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.


Assuntos
Genótipo , Hordeum/genética , Fósforo/metabolismo , Solo/química , Agricultura , Hordeum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
Plant Cell Environ ; 34(3): 444-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062319

RESUMO

It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.


Assuntos
Ácidos/química , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Solo/química , Genótipo , Poaceae/genética
5.
Funct Plant Biol ; 48(2): 156-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910884

RESUMO

Mycorrhizal fungi are ubiquitous in agroecosystems and form symbiotic associations that contribute to the phosphorus (P) acquisition of many plants. The impact of mycorrhizas is most pronounced in P-deficient soil and commonly involves modifications to the root morphology of colonised plants. However, the consequences of mycorrhizal colonisation on root acclimation responses to P stress are not well described. Five annual pasture legumes, with differing root morphologies, were grown to determine the effect of mycorrhizal colonisation on shoot yield, root morphology and P uptake. Micro-swards of each legume were established in pots filled with a topsoil layer that had been amended with five rates of P fertiliser. The topsoil overlaid a low-P subsoil that mimicked the stratification of P that occurs under pasture. Mycorrhizal colonisation improved P acquisition and shoot yield in the low-P soil treatments, but did not reduce the critical external P requirement of the legumes for near-maximum yield. The yield responses of the mycorrhizal plants were associated with reduced dry matter allocation to topsoil roots, which meant that the P acquisition benefit associated with mycorrhizal colonisation was not additive in the P-deficient soil. The contribution of the mycorrhizal association to P acquisition was consistent among the legumes when they were compared at an equivalent level of plant P stress, and was most pronounced below a P stress index of ~0.5. The intrinsic root morphology of the legumes determined their differences in P-acquisition efficiency irrespective of mycorrhizal colonisation.


Assuntos
Fabaceae , Micorrizas , Fertilizantes , Fósforo , Solo
6.
Funct Plant Biol ; 43(9): 815-826, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480506

RESUMO

Annual pasture legume species can vary more than 3-fold in their critical external phosphorus (P) requirement (i.e. P required for 90% of maximum yield). In this work we investigated the link between root morphology, P acquisition and critical external P requirement among pasture species. The root morphology acclimation of five annual pasture legumes and one grass species to low soil P availability was assessed in a controlled-environment study. The critical external P requirement of the species was low (Dactylis glomerata L., Ornithopus compressus L., Ornithopus sativus Brot.), intermediate (Biserrula pelecinus L., Trifolium hirtum All.) or high (Trifolium subterraneum L.). Root hair cylinder volumes (a function of root length, root hair length and average root diameter) were estimated in order to assess soil exploration and its impact on P uptake. Most species increased soil exploration in response to rates of P supply near or below their critical external P requirement. The legumes differed in how they achieved their maximum root hair cylinder volume. The main variables were high root length density, long root hairs and/or high specific root length. However, total P uptake per unit surface area of the root hair cylinder was similar for all species at rates of P supply below critical P. Species that maximised soil exploration by root morphology acclimation were able to prolong access to P in moderately P-deficient soil. However, among the species studied, it was those with an intrinsic capacity for a high root-hair-cylinder surface area (i.e. long roots and long root hairs) that achieved the lowest critical P requirement.

7.
PLoS One ; 7(10): e48565, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119058

RESUMO

The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.


Assuntos
Carbono/química , Ecologia , Hidrologia , Solo/química , Austrália , Interações Hidrofóbicas e Hidrofílicas , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa