Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796985

RESUMO

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
2.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881867

RESUMO

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Assuntos
Hidróxido de Alumínio , COVID-19 , Humanos , Animais , Camundongos , Imunidade nas Mucosas , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunização , Adjuvantes Imunológicos , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895717

RESUMO

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eficácia de Vacinas , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Vacina contra Sarampo-Caxumba-Rubéola/genética , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Mesocricetus , Camundongos , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
4.
Infect Immun ; 92(3): e0022323, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38323817

RESUMO

The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Coqueluche , Animais , Camundongos , Coqueluche/prevenção & controle , Receptor 4 Toll-Like , Vacina contra Coqueluche , Vacina contra Difteria, Tétano e Coqueluche , Bordetella pertussis , Adjuvantes Imunológicos , Imunidade , Anticorpos Antibacterianos
5.
Infect Immun ; 89(12): e0034621, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34516235

RESUMO

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


Assuntos
Bordetella pertussis/imunologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Imunidade nas Mucosas , Coqueluche/prevenção & controle , Animais , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Ratos , Ratos Sprague-Dawley , Coqueluche/imunologia
6.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33318136

RESUMO

Bordetella pertussis colonizes the respiratory mucosa of humans, inducing an immune response seeded in the respiratory tract. An individual, once convalescent, exhibits long-term immunity to the pathogen. Current acellular pertussis (aP) vaccines do not induce the long-term immune response observed after natural infection in humans. In this study, we evaluated the durability of protection from intranasal (i.n.) pertussis vaccines in mice. Mice that convalesced from B. pertussis infection served as a control group. Mice were immunized with a mock vaccine (phosphate-buffered saline [PBS]), aP only, or an aP base vaccine combined with one of the following adjuvants: alum, curdlan, or purified whole glucan particles (IRI-1501). We utilized two study designs: short term (challenged 35 days after priming vaccination) and long term (challenged 6 months after boost). The short-term study demonstrated that immunization with i.n. vaccine candidates decreased the bacterial burden in the respiratory tract, reduced markers of inflammation, and induced significant serum and lung antibody titers. In the long-term study, protection from bacterial challenge mirrored the results observed in the short-term challenge study. Immunization with pertussis antigens alone was surprisingly protective in both models; however, the alum and IRI-1501 adjuvants induced significant B. pertussis-specific IgG antibodies in both the serum and lung and increased numbers of anti-B. pertussis IgG-secreting plasma cells in the bone marrow. Our data indicate that humoral responses induced by the i.n. vaccines correlated with protection, suggesting that long-term antibody responses can be protective.


Assuntos
Anticorpos Antibacterianos/sangue , Bordetella pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Modelos Animais de Doenças , Humanos , Imunização , Camundongos , Fatores de Tempo , Vacinação
7.
Infect Immun ; 89(12): e0030421, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125597

RESUMO

Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.


Assuntos
Bordetella pertussis/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Coqueluche/etiologia , Animais , Biomarcadores , Bordetella pertussis/patogenicidade , Modelos Animais de Doenças , Ratos , Coqueluche/metabolismo , Coqueluche/patologia
8.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012638

RESUMO

Bordetella pertussis is the primary causative agent of pertussis (whooping cough), which is a respiratory infection that leads to a violent cough and can be fatal in infants. There is a need to develop more effective vaccines because of the resurgence of cases of pertussis in the United States since the switch from the whole-cell pertussis vaccines (wP) to the acellular pertussis vaccines (aP; diphtheria-tetanus-acellular-pertussis vaccine/tetanus-diphtheria-pertussis vaccine). Adenylate cyclase toxin (ACT) is a major virulence factor of B. pertussis that is (i) required for establishment of infection, (ii) an effective immunogen, and (iii) a protective antigen. The C-terminal repeats-in-toxin domain (RTX) of ACT is sufficient to induce production of toxin-neutralizing antibodies. In this study, we characterized the effectiveness of vaccines containing the RTX antigen against experimental murine infection with B. pertussis RTX was not protective as a single-antigen vaccine against B. pertussis challenge, and adding RTX to 1/5 human dose of aP did not enhance protection. Since the doses of aP used in murine studies are not proportionate to mouse/human body masses, we titrated the aP from 1/20 to 1/160 of the human dose. Mice receiving 1/80 human aP dose had bacterial burden comparable to those of naive controls. Adding RTX antigen to the 1/80 aP base resulted in enhanced bacterial clearance. Inclusion of RTX induced production of antibodies recognizing RTX, enhanced production of anti-pertussis toxin, decreased secretion of proinflammatory cytokines, such as interleukin-6, and decreased recruitment of total macrophages in the lung. This study shows that adding RTX antigen to an appropriate dose of aP can enhance protection against B. pertussis challenge in mice.


Assuntos
Adenilil Ciclases/imunologia , Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Toxoides/imunologia , Coqueluche/imunologia , Adenilil Ciclases/administração & dosagem , Adenilil Ciclases/genética , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Bordetella pertussis/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/genética , Toxoides/administração & dosagem , Toxoides/genética , Coqueluche/microbiologia
10.
J Acoust Soc Am ; 140(1): 176, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475143

RESUMO

The ocean soundscape of the Gulf of Mexico (GOM) has not been well-studied, although it is an important habitat for marine mammals, including sperm and beaked whales, many dolphin species, and a potentially endangered baleen whale species. The GOM is also home to high levels of hydrocarbon exploration and extraction, heavily used commercial shipping ports, and significant fishery industry activity, all of which are known contributors to oceanic noise. From 2010-2013, the soundscape of three deep and two shallow water sites in the GOM were monitored over 10 - 1000 Hz. Average sound pressure spectrum levels were high, >90 dB re 1 µPa(2)/Hz at <40 Hz for the deep water sites and were associated with noise from seismic exploration airguns. More moderate sound pressure levels, <55 dB re 1 µPa(2)/Hz at >700 Hz, were present at a shallow water site in the northeastern Gulf, removed from the zone of industrial development and bathymetrically shielded from deep water anthropogenic sound sources. During passage of a high wind event (Hurricane Isaac, 2012), sound pressure levels above 200 Hz increased with wind speed, but at low frequencies (<100 Hz) sound pressure levels decreased owing to absence of noise from airguns.

11.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328073

RESUMO

Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.

12.
Microbiol Spectr ; 12(1): e0352723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054724

RESUMO

IMPORTANCE: Pertussis, caused by Bordetella pertussis, can cause debilitating respiratory symptoms, so whole-cell pertussis vaccines (wPVs) were introduced in the 1940s. However, reactogenicity of wPV necessitated the development of acellular pertussis vaccines (aPVs) that were introduced in the 1990s. Since then, until the COVID-19 pandemic began, reported pertussis incidence was increasing, suggesting that aPVs do not induce long-lasting immunity and may not effectively prevent transmission. Additionally, aPVs do not provide protection against other Bordetella species that are observed during outbreaks. The significance of this work is in determining potential new vaccine antigens for multiple Bordetella species that are predicted to elicit long-term immune responses. Genome-based approaches have aided the development of novel vaccines; here, these methods identified Bordetella vaccine candidates that may be cross-protective and predicted to induce strong memory responses. These targets can lead to an improved vaccine with a strong safety profile while also strengthening the longevity of the immune response.


Assuntos
Coqueluche , Humanos , Epitopos , Pandemias , Vacinas Acelulares , Bordetella pertussis/genética , Vacina contra Coqueluche , Antígenos HLA-DR
13.
NPJ Vaccines ; 9(1): 103, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858423

RESUMO

Acellular multivalent vaccines for pertussis (DTaP and Tdap) prevent symptomatic disease and infant mortality, but immunity to Bordetella pertussis infection wanes significantly over time resulting in cyclic epidemics of pertussis. The messenger RNA (mRNA) vaccine platform provides an opportunity to address complex bacterial infections with an adaptable approach providing Th1-biased responses. In this study, immunogenicity and challenge models were used to evaluate the mRNA platform with multivalent vaccine formulations targeting both B. pertussis antigens and diphtheria and tetanus toxoids. Immunization with mRNA formulations were immunogenetic, induced antigen specific antibodies, as well as Th1 T cell responses. Upon challenge with either historical or contemporary B. pertussis strains, 6 and 10 valent mRNA DTP vaccine provided protection equal to that of 1/20th human doses of either DTaP or whole cell pertussis vaccines. mRNA DTP immunized mice were also protected from pertussis toxin challenge as measured by prevention of lymphocytosis and leukocytosis. Collectively these pre-clinical mouse studies illustrate the potential of the mRNA platform for multivalent bacterial pathogen vaccines.

14.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961063

RESUMO

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Assuntos
Administração Intranasal , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Cricetinae , Humanos , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vírus do Sarampo/imunologia , Vírus do Sarampo/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Caxumba/imunologia , Vírus da Caxumba/genética , Camundongos Knockout , Mesocricetus , Imunoglobulina A/imunologia , Imunoglobulina A/sangue
15.
Front Immunol ; 14: 1181876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275891

RESUMO

Introduction: Resurgence of pertussis, caused by Bordetella pertussis, necessitates novel vaccines and vaccination strategies to combat this disease. Alum-adjuvanted acellular pertussis vaccines (aPV) delivered intramuscularly reduce bacterial numbers in the lungs of immunized animals and humans, but do not reduce nasal colonization. Thus, aPV-immunized individuals are sources of community transmission. We showed previously that modification of a commercial aPV (Boostrix) by addition of the Th1/17 polarizing adjuvant Bordetella Colonization Factor A (BcfA) attenuated Th2 responses elicited by alum and accelerated clearance of B. pertussis from mouse lungs. Here we tested whether a heterologous immunization strategy with systemic priming and mucosal booster (prime-pull) would reduce nasal colonization. Methods: Adult male and female mice were immunized intramuscularly (i.m.) with aPV or aPV/BcfA and boosted either i.m. or intranasally (i.n.) with the same formulation. Tissue-resident memory (TRM) responses in the respiratory tract were quantified by flow cytometry, and mucosal and systemic antibodies were quantified by ELISA. Immunized and naïve mice were challenged i.n. with Bordetella pertussis and bacterial load in the nose and lungs enumerated at days 1-14 post-challenge. Results: We show that prime-pull immunization with Boostrix plus BcfA (aPV/BcfA) generated IFNγ+ and IL-17+ CD4+ lung resident memory T cells (TRM), and CD4+IL-17+ TRM in the nose. In contrast, aPV alone delivered by the same route generated IL-5+ CD4+ resident memory T cells in the lungs and nose. Importantly, nasal colonization was only reduced in mice immunized with aPV/BcfA by the prime-pull regimen. Conclusions: These results suggest that TH17 polarized TRM generated by aPV/BcfA may reduce nasal colonization thereby preventing pertussis transmission and subsequent resurgence.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Feminino , Masculino , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Linfócitos T CD4-Positivos , Interleucina-17 , Vacina contra Coqueluche , Coqueluche/prevenção & controle
16.
PLoS One ; 18(11): e0286925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917623

RESUMO

The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B. pertussis, to understand the differences in disease manifestation elicited via each route. We observed that both routes of B. pertussis challenge result in dose-dependent colonization of the respiratory tract, but overall, intranasal challenge led to higher bacterial burden in the nasal lavage, trachea, and lung. Furthermore, high dose intranasal challenge results in induction of leukocytosis and pro-inflammatory cytokine responses compared to aerosol challenge. These data highlight crucial differences in B. pertussis challenge routes that should be considered during experimental design.


Assuntos
Bordetella pertussis , Coqueluche , Animais , Camundongos , Camundongos Endogâmicos BALB C , Aerossóis e Gotículas Respiratórios , Administração Intranasal , Vacina contra Coqueluche
17.
Vaccine ; 40(35): 5229-5240, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35927132

RESUMO

Bordetella pertussis is the causative agent of whooping cough (pertussis), a severe respiratory disease that can be fatal, particularly in infants. Despite high vaccine coverage, pertussis remains a problem because the currently used DTaP and Tdap vaccines do not completely prevent infection or transmission. It is well established that the alum adjuvant is a potential weakness of the acellular vaccines because the immunity provided by it is short-term. We aimed to evaluate the potential of CpG 1018® adjuvant to improve antibody responses and enhance protection against B. pertussis challenge in a murine model. A titrated range of Tdap vaccine doses were evaluated in order to best identify the adjuvant capability of CpG 1018. Antibody responses to pertussis toxin (PT), filamentous hemagglutinin (FHA), or the whole bacterium were increased due to the inclusion of CpG 1018. In B. pertussis intranasal challenge studies, we observed improved protection and bacterial clearance from the lower respiratory tract due to adding CpG 1018 to 1/20th the human dose of Tdap. Further, we determined that Tdap and Tdap + CpG 1018 were both capable of facilitating clearance of strains that do not express pertactin (PRN-), which are rising in prevalence. Functional phenotyping of antibodies revealed that the inclusion of CpG 1018 induced more bacterial opsonization and antibodies of the Th1 phenotype (IgG2a and IgG2b). This study demonstrates the potential of adding CpG 1018 to Tdap to improve immunogenicity and protection against B. pertussis compared to the conventional, alum-only adjuvanted Tdap vaccine.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Coqueluche , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Formação de Anticorpos , Bordetella pertussis , Humanos , Imunoglobulina G , Lactente , Camundongos , Vacina contra Coqueluche , Coqueluche/prevenção & controle
18.
medRxiv ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34426815

RESUMO

The SARS-CoV-2 pandemic has affected all types of global communities. Differences in urban and rural environments have led to varying levels of transmission within these subsets of the population. To fully understand the prevalence and impact of SARS-CoV-2 it is critical to survey both types of community. This study establishes the prevalence of SARS-CoV-2 in a rural community: Montgomery, West Virginia. Approximately 10% of participants exhibited serological or PCR-based results indicating exposure to SARS-CoV-2 within 6 months of the sampling date. Quantitative analysis of IgG levels against SARS-CoV-2 receptor binding domain (RBD) was used to stratify individuals based on antibody response to SARS-CoV-2. A significant negative correlation between date of exposure and degree of anti-SARS-CoV-2 RBD IgG (R 2 = 0.9006) was discovered in addition to a correlation between neutralizing anti-SARS-CoV-2 antibodies (R 2 = 0.8880) and days post exposure. Participants were confirmed to have normal immunogenic profiles by determining serum reactivity B. pertussis antigens commonly used in standardized vaccines. No significant associations were determined between anti-SARS-CoV-2 RBD IgG and age or biological sex. Reporting of viral-like illness symptoms was similar in SARS-CoV-2 exposed participants greater than 30 years old (100% reporting symptoms 30-60 years old, 75% reporting symptoms >60 years old) in contrast to participants under 30 years old (25% reporting symptoms). Overall, this axnalysis of a rural population provides important information about the SARS-CoV-2 pandemic in small rural communities. The study also underscores the fact that prior infection with SARS-CoV-2 results in antibody responses that wane over time which highlights the need for vaccine mediated protection in the absence of lasting protection.

19.
Vaccines (Basel) ; 8(4)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153066

RESUMO

Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.

20.
mSphere ; 4(2)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996109

RESUMO

Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-µm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussis during infection, and this method will facilitate efforts to understand how this pathogen causes infection.IMPORTANCEIn vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the "infection transcriptome" of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.


Assuntos
Bordetella pertussis/genética , Transcriptoma , Coqueluche/microbiologia , Animais , Bordetella pertussis/crescimento & desenvolvimento , Filtração , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pulmão/microbiologia , Camundongos , Técnicas Microbiológicas , Análise de Sequência de RNA , Virulência , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa