RESUMO
BACKGROUND: The Multi-Omics for Mothers and Infants consortium aims to improve birth outcomes. Preterm birth is a major obstetrical complication globally and causes significant infant and childhood morbidity and mortality. OBJECTIVE: We analyzed placental samples (basal plate, placenta or chorionic villi, and the chorionic plate) collected by the 5 Multi-Omics for Mothers and Infants sites, namely The Alliance for Maternal and Newborn Health Improvement Bangladesh, The Alliance for Maternal and Newborn Health Improvement Pakistan, The Alliance for Maternal and Newborn Health Improvement Tanzania, The Global Alliance to Prevent Prematurity and Stillbirth Bangladesh, and The Global Alliance to Prevent Prematurity and Stillbirth Zambia. The goal was to analyze the morphology and gene expression of samples collected from preterm and uncomplicated term births. STUDY DESIGN: The teams provided biopsies from 166 singleton preterm (<37 weeks' gestation) and 175 term (≥37 weeks' gestation) deliveries. The samples were fixed in formalin and paraffin embedded. Tissue sections from these samples were stained with hematoxylin and eosin and subjected to morphologic analyses. Other placental biopsies (n=35 preterm, 21 term) were flash frozen, which enabled RNA purification for bulk transcriptomics. RESULTS: The morphologic analyses revealed a surprisingly high rate of inflammation that involved the basal plate, placenta or chorionic villi, and the chorionic plate. The rate of inflammation in chorionic villus samples, likely attributable to chronic villitis, ranged from 25% (Pakistan site) to 60% (Zambia site) of cases. Leukocyte infiltration in this location vs in the basal plate or chorionic plate correlated with preterm birth. Our transcriptomic analyses identified 267 genes that were differentially expressed between placentas from preterm vs those from term births (123 upregulated, 144 downregulated). Mapping the differentially expressed genes onto single-cell RNA sequencing data from human placentas suggested that all the component cell types, either singly or in subsets, contributed to the observed dysregulation. Consistent with the histopathologic findings, gene ontology analyses highlighted the presence of leukocyte infiltration or activation and inflammatory responses in both the fetal and maternal compartments. CONCLUSION: The relationship between placental inflammation and preterm birth is appreciated in developed countries. In this study, we showed that this link also exists in developing geographies. In addition, among the participating sites, we found geographic- and population-based differences in placental inflammation and preterm birth, suggesting the importance of local factors.
RESUMO
BACKGROUND: Fluoride exposure during pregnancy has been associated with various effects on offspring, including changes in behavior and IQ. To provide clues to possible mechanisms by which fluoride may affect human fetal development, we completed proteomic analyses of cord blood serum collected from second-trimester pregnant women residing in northern California, USA. OBJECTIVE: To identify changes in cord blood proteins associated with maternal serum fluoride concentration in pregnant women. METHODS: The proteomes of 19 archived second-trimester cord blood samples from women living in northern California, USA, and having varied serum fluoride concentrations, were analyzed by quantitative mass spectrometry. The 327 proteins that were quantified were characterized by their abundance relative to maternal serum fluoride concentration, and subjected to pathway analyses using PANTHER and Ingenuity Pathway Analysis processes. RESULTS: Pathway analyses showed significant increases in process related to reactive oxygen species and cellular oxidant detoxification, associated with increasing maternal serum fluoride concentrations. Pathways showing significant decreases included complement cascade, suggesting alterations in alterations in process associated with inflammation. CONCLUSION: Maternal fluoride exposure, as measured by serum fluoride concentrations in a small, but representative sample of women from northern California, USA, showed significant changes in the second trimester cord blood proteome relative to maternal serum fluoride concentration.
Assuntos
Sangue Fetal , Fluoretos , Segundo Trimestre da Gravidez , Proteoma , Humanos , Sangue Fetal/química , Feminino , Projetos Piloto , Fluoretos/sangue , Gravidez , Proteoma/análise , California , Adulto , Segundo Trimestre da Gravidez/sangue , Exposição Materna , Adulto Jovem , Poluentes Ambientais/sangueRESUMO
Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.
Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/metabolismo , Escherichia coli/metabolismo , Proteômica/métodos , Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de ProteínasRESUMO
Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.
Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Desulfovibrio vulgaris/metabolismo , Escherichia coli/metabolismo , Cromatografia de Afinidade , Bases de Dados de Proteínas , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Técnicas do Sistema de Duplo-HíbridoRESUMO
We used isobaric mass tagging (iTRAQ) and lectin affinity capture mass spectrometry (MS)-based workflows for global analyses of parotid saliva (PS) and whole saliva (WS) samples obtained from patients diagnosed with primary Sjögren's Syndrome (pSS) who were enrolled in the Sjögren's International Collaborative Clinical Alliance (SICCA) as compared with two control groups. The iTRAQ analyses revealed up- and down-regulation of numerous proteins that could be involved in the disease process (e.g., histones) or attempts to mitigate the ensuing damage (e.g., bactericidal/permeability increasing fold containing family (BPIF) members). An immunoblot approach applied to independent sample sets confirmed the pSS associated up-regulation of ß2-microglobulin (in PS) and down-regulation of carbonic anhydrase VI (in WS) and BPIFB2 (in PS). Beyond the proteome, we profiled the N-glycosites of pSS and control samples. They were enriched for glycopeptides using lectins Aleuria aurantia and wheat germ agglutinin, which recognize fucose and sialic acid/N-acetyl glucosamine, respectively. MS analyses showed that pSS is associated with increased N-glycosylation of numerous salivary glycoproteins in PS and WS. The observed alterations of the salivary proteome and N-glycome could be used as pSS biomarkers enabling easier and earlier detection of this syndrome while lending potential new insights into the disease process.
Assuntos
Glicoproteínas/metabolismo , Proteoma/genética , Saliva/metabolismo , Síndrome de Sjogren/metabolismo , Anidrases Carbônicas/biossíntese , Feminino , Glicoproteínas/química , Glicosilação , Humanos , Lectinas/química , Masculino , Ácido N-Acetilneuramínico/metabolismo , Glândula Parótida/química , Glândula Parótida/metabolismo , Saliva/química , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologiaRESUMO
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Assuntos
Proteínas de Neoplasias/sangue , Neoplasias/metabolismo , Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/sangue , Peptídeos/química , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The carbohydrate portions of salivary glycoproteins play important roles, including mediating bacterial and leukocyte adhesion. Salivary glycosylation is complex. Many of its glycoproteins present ABO and Lewis blood group determinants. An individual's genetic complement and secretor status govern the expression of blood group antigens. We queried the extent to which salivary glycosylation varies according to blood group and secretor status. First, we screened submandibular/sublingual and parotid salivas collected as ductal secretions for reactivity with a panel of 16 lectins. We selected three lectins that reacted with the largest number of glycoproteins and one that recognized uncommon lactosamine-containing structures. Ductal salivas representing a secretor with complex blood group expression and a nonsecretor with a simple pattern were separated by SDS-PAGE. Gel slices were trypsin digested and the glycopeptides were individually separated on each of the four lectins. The bound fractions were de-N-glycosylated. LC-MS/MS identified the original glycosylation sites, the peptide sequences, and the parent proteins. RESULTS: The results revealed novel salivary N-glycosites and glycoproteins not previously reported. As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures. CONCLUSIONS: Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health.
RESUMO
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Bovinos , Limite de Detecção , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Padrões de Referência , Software , Fatores de TempoRESUMO
Background: Fluoride exposure during pregnancy has been associated with various effects on offspring, including changes in behavior and IQ. To provide clues to possible mechanisms by which fluoride affects human fetal development, we completed proteomic analyses of cord blood serum collected from second-trimester pregnant women residing in Northern California with either high or low fluoride exposure, as identified by maternal serum fluoride concentrations. Objective: To identify changes in cord blood proteins associated with maternal serum fluoride concentration in pregnant women living in Northern California. Methods: The proteomes of 19 archived second-trimester cord blood samples representing highest and lowest serum fluoride concentrations from a cohort of 48 women living in Northern California, previously analyzed for serum, urine and amniotic fluoride concentrations, were characterized by mass spectrometry. Proteins highly correlated to maternal serum fluoride concentrations were identified, and further compared in a group of samples from women with the highest serum fluoride to the group with the lowest maternal serum fluoride concentrations. Results: Nine cord blood proteins were significantly correlated with maternal serum fluoride concentrations. Six of these proteins, including apolipoprotein B-100, delta homolog 1, coagulation factor X, mimecan, plasma kallikrein, and vasorin, were significantly decreased in the cord blood from women with the highest serum fluoride levels. Conclusion: Changes in the relative amounts of second trimester cord blood proteins included proteins associated with the development of the fetal hematopoetic system.
RESUMO
Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms.
Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Desulfovibrio vulgaris/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Cromatografia por Troca Iônica , Desulfovibrio vulgaris/enzimologia , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Espectrometria de Massas , Proteínas de Membrana/química , Peso Molecular , Complexos Multiproteicos/química , Periplasma/química , Periplasma/enzimologia , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteoma/química , Proteômica/métodos , Homologia de Sequência de Aminoácidos , SolubilidadeRESUMO
We used a lectin chromatography/MS-based approach to screen conditioned medium from a panel of luminal (less aggressive) and triple negative (more aggressive) breast cancer cell lines (n=5/subtype). The samples were fractionated using the lectins Aleuria aurantia (AAL) and Sambucus nigra agglutinin (SNA), which recognize fucose and sialic acid, respectively. The bound fractions were enzymatically N-deglycosylated and analyzed by LC-MS/MS. In total, we identified 533 glycoproteins, â¼90% of which were components of the cell surface or extracellular matrix. We observed 1011 glycosites, 100 of which were solely detected in ≥3 triple negative lines. Statistical analyses suggested that a number of these glycosites were triple negative-specific and thus potential biomarkers for this tumor subtype. An analysis of RNaseq data revealed that approximately half of the mRNAs encoding the protein scaffolds that carried potential biomarker glycosites were up-regulated in triple negative vs luminal cell lines, and that a number of genes encoding fucosyl- or sialyltransferases were differentially expressed between the two subtypes, suggesting that alterations in glycosylation may also drive candidate identification. Notably, the glycoproteins from which these putative biomarker candidates were derived are involved in cancer-related processes. Thus, they may represent novel therapeutic targets for this aggressive tumor subtype.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromatografia de Afinidade/métodos , Glicoproteínas/análise , Lectinas/química , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Glicoproteínas/química , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Humanos , Lectinas/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteoma/químicaRESUMO
We have developed an information-dependent, iterative MS/MS acquisition (IMMA) tool for improving MS/MS efficiency, increasing proteome coverage, and shortening analysis time for high-throughput proteomics applications based on the LC-MALDI MS/MS platform. The underlying principle of IMMA is to limit MS/MS analyses to a subset of molecular ions that are likely to identify a maximum number of proteins. IMMA reduces redundancy of MS/MS analyses by excluding from the precursor ion peak lists proteotypic peptides derived from the already identified proteins and uses a retention time prediction algorithm to limit the degree of false exclusions. It also increases the utilization rate of MS/MS spectra by removing "low value" unidentifiable targets like nonpeptides and peptides carrying large loads of modifications, which are flagged by their "nonpeptide" excess-to-nominal mass ratios. For some samples, IMMA increases the number of identified proteins by â¼20-40% when compared to the data dependent methods. IMMA terminates an MS/MS run at the operator-defined point when "costs" (e.g., time of analysis) start to overrun "benefits" (e.g., number of identified proteins), without prior knowledge of sample contents and complexity. To facilitate analysis of closely related samples, IMMA's inclusion list functionality is currently under development.
Assuntos
Cromatografia Líquida/métodos , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Íons , Proteínas/química , Software , Fluxo de TrabalhoRESUMO
Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.
Assuntos
Biomarcadores Tumorais/química , Cromatografia Líquida de Alta Pressão/métodos , Glicoproteínas/química , Lectinas/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores Tumorais/sangue , Cromatografia de Afinidade/métodos , Bases de Dados Factuais , Feminino , Glicopeptídeos/química , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Humanos , Masculino , Neoplasias/diagnóstico , Polissacarídeos/isolamento & purificação , Ligação Proteica , Tripsina/metabolismoRESUMO
OBJECTIVES: To assess the clinical efficacy of the self-pressurized air-Q ILA™ (ILA-SP). AIM: The purpose of this prospective audit was to evaluate the feasibility of the ILA-SP in clinical practice and generate data for future comparison trials. BACKGROUND: The ILA-SP is a new first-generation supraglottic airway for children with a self-adjusting cuff and lack of a pilot balloon. METHODS: Over a 4-month period, 352 children with an ASA physical status of I-III, newborn to 18 years of age, undergoing various procedures were studied. Data points assessed included insertion success rates, airway leak pressures, quality of ventilation, and perioperative complications associated with the use of this device. RESULTS: In 349 of the 352 patients in this study, the ILA-SP was used successfully as a primary supraglottic airway device in a variety of patients. Three patients required conversion to a standard laryngeal mask airway or a tracheal tube. The mean initial airway leak pressure for all patients was 17.8 ± 5.4 cm H(2)O, and 20.4 ± 5.5 cm H(2)O when re-checked at 10 min, which was statistically significant (P < 0.001). Complications were limited to 14 patients and related to reflex activation of the airway (coughing, laryngospasm, and bronchospasm) (n = 10), sore throat (n = 3), and blood staining on removal of the device (n = 1). There were no episodes of regurgitation, aspiration, or hoarseness. CONCLUSIONS: Acceptable clinical performance was demonstrated with the ILA-SP for a variety of procedures in infants and children with spontaneous and positive pressure ventilation. Future studies comparing this device to other supraglottic airways may provide useful information regarding the safety of the ILA-SP in pediatric clinical practice.
Assuntos
Máscaras Laríngeas , Manuseio das Vias Aéreas/métodos , Espasmo Brônquico/epidemiologia , Ar Comprimido , Tosse/epidemiologia , Estudos de Viabilidade , Feminino , Rouquidão/epidemiologia , Humanos , Lactente , Recém-Nascido , Complicações Intraoperatórias/epidemiologia , Máscaras Laríngeas/efeitos adversos , Laringismo/epidemiologia , Refluxo Laringofaríngeo/epidemiologia , Masculino , Monitorização Intraoperatória , Assistência Perioperatória , Faringite/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Respiração ArtificialRESUMO
The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomics tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum (ER), magnifying normally difficult to detect subsets of the protein of interest. For PAcP, this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wildtype PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.
Assuntos
Fosfatase Ácida/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Retículo Endoplasmático/enzimologia , Neoplasias da Próstata/enzimologia , Fosfatase Ácida/genética , Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Detecção Precoce de Câncer , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Humanos , Isoenzimas , Masculino , Valor Preditivo dos Testes , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomic tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum, magnifying normally difficult to detect subsets of the protein of interest. For PAcP this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wild-type PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.
RESUMO
In enzymatic (18)O-labeling strategies for quantitative proteomics, the exchange of carboxyl oxygens at low pH is a common, undesired side reaction. We asked if acid-catalyzed back exchange could interfere with quantitation and whether the reaction itself could be used as method for introducing (18)O label into peptides. Several synthetic peptides were dissolved in dilute acid containing 50% (v/v) H(2)(18)O and incubated at room temperature. Aliquots were removed over a period of 3 weeks and analyzed by tandem mass spectrometry (MS/MS). (18)O-incorporation ratios were determined by linear regression analysis that allowed for multiple stable-isotope incorporations. At low pH, peptides exchanged their carboxyl oxygen atoms with the aqueous solvent. The isotope patterns gradually shifted to higher masses until they reached the expected binomial distribution at equilibrium after approximately 11 days. Reaction rates were residue- and sequence-specific. Due to its slow nature, the acid-catalyzed back exchange is expected to minimally interfere with enzymatic (18)O-labeling studies provided that storage and analysis conditions minimize low-pH exposure times. On its own, acid-catalyzed (18)O labeling is a general tagging strategy that is an alternative to the chemical, metabolic, and enzymatic isotope-labeling schemes currently used in quantitative proteomics.
Assuntos
Ácidos/química , Peptídeos/química , Coloração e Rotulagem/métodos , Sequência de Aminoácidos , Catálise , Concentração de Íons de Hidrogênio , Cinética , Isótopos de Oxigênio/química , Proteômica , Especificidade por Substrato , Espectrometria de Massas em TandemRESUMO
Existing data indicate that sleep-wakefulness is an essential behavior. The biological function(s) of sleep, however, remains unknown, due, in part, to the lack of information available at the intracellular level. Preliminary microarray analyses show that changes in behavioral state influence regional mRNA profiles; however, the impact of sleep on protein signatures is virtually unexplored. In these studies, cortical protein profiles were examined after timed bouts of spontaneous sleep-wakefulness. Within minutes of each behavioral state examined, a small number of spots showing unique expression were detected. Mass spectroscopy analyses of sleep- and wake-related spots identified proteins associated with multiple functional categories. Two sleep-associated proteins were further validated using a sleep deprivation paradigm. We found preliminary evidence for two different post-transcriptional mechanisms-one (GAPDH) in which the amount of protein was increased in the recovery sleep following prolonged waking, while the other (actin) suggested that post-translational modifications may underlie sleep. The similarities between the effects of sleep on both protein and mRNA profiles indicate that dynamic intracellular changes underlie sleep-wake states and are consistent with roles for sleep in multiple biological functions.
Assuntos
Actinas/genética , Córtex Cerebral/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Sono/genética , Vigília/genética , Actinas/metabolismo , Animais , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Masculino , Espectrometria de Massas , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
We present a strategy to discover recombinant monoclonal antibodies (mAbs) to specific cancers and demonstrate this approach using basal subtype breast cancers. A phage antibody library was depleted of antibodies to common cell surface molecules by incubation with luminal breast cancer cell lines, and then selected on a single basal-like breast cancer cell line (MDA-MB-231) for binding associated receptor-mediated endocytosis. Additional profiling against two luminal and four basal-like cell lines revealed 61 unique basal-specific mAbs from a pool of 1440 phage antibodies. The unique mAbs were further screened on nine basal and seven luminal cell lines to identify those with the greatest affinity, specificity, and internalizing capability for basal-like breast cancer cells. Among the internalizing basal-specific mAbs were those recognizing four transmembrane receptors (EphA2, CD44, CD73 and EGFR), identified by immunoprecipitation-mass spectrometry and yeast-displayed antigen screening. Basal-like breast cancer expression of these four receptors was confirmed using a bioinformatic approach, and expression microarray data on 683 intrinsically subtyped primary breast tumors. This overall approach, which sequentially employs phage display antibody library selection, antigen identification and bioinformatic confirmation of antigen expression by cancer subtypes, offers efficient production of high-affinity mAbs with diagnostic and therapeutic utility against specific cancer subtypes.