Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 282-286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570690

RESUMO

Polyatomic molecules have rich structural features that make them uniquely suited to applications in quantum information science1-3, quantum simulation4-6, ultracold chemistry7 and searches for physics beyond the standard model8-10. However, a key challenge is fully controlling both the internal quantum state and the motional degrees of freedom of the molecules. Here we demonstrate the creation of an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state. The complex quantum structure of CaOH results in a non-trivial dependence of the molecules' behaviour on the tweezer light wavelength. We control this interaction and directly and non-destructively image individual molecules in the tweezer array with a fidelity greater than 90%. The molecules are manipulated at the single internal quantum state level, thus demonstrating coherent state control in a tweezer array. The platform demonstrated here will enable a variety of experiments using individual polyatomic molecules with arbitrary spatial arrangement.

2.
Nature ; 606(7912): 70-74, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650357

RESUMO

Laser cooling and trapping1,2, and magneto-optical trapping methods in particular2, have enabled groundbreaking advances in science, including Bose-Einstein condensation3-5, quantum computation with neutral atoms6,7 and high-precision optical clocks8. Recently, magneto-optical traps (MOTs) of diatomic molecules have been demonstrated9-12, providing access to research in quantum simulation13 and searches for physics beyond the standard model14. Compared with diatomic molecules, polyatomic molecules have distinct rotational and vibrational degrees of freedom that promise a variety of transformational possibilities. For example, ultracold polyatomic molecules would be uniquely suited to applications in quantum computation and simulation15-17, ultracold collisions18, quantum chemistry19 and beyond-the-standard-model searches20,21. However, the complexity of these molecules has so far precluded the realization of MOTs for polyatomic species. Here we demonstrate magneto-optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). After trapping, the molecules are laser cooled in a blue-detuned optical molasses to a temperature of 110 µK, which is below the Doppler cooling limit. The temperatures and densities achieved here make CaOH a viable candidate for a wide variety of quantum science applications, including quantum simulation and computation using optical tweezer arrays15,17,22,23. This work also suggests that laser cooling and magneto-optical trapping of many other polyatomic species24-27 will be both feasible and practical.

3.
Phys Rev Lett ; 130(15): 153202, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115898

RESUMO

We report optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). CaOH molecules from a magneto-optical trap are sub-Doppler laser cooled to 20(3) µK in free space and loaded into an optical dipole trap. We attain an in-trap molecule number density of 3(1)×10^{9} cm^{-3} at a temperature of 57(8) µK. Trapped CaOH molecules are optically pumped into an excited vibrational bending mode, whose ℓ-type parity doublet structure is a potential resource for a wide range of proposed quantum science applications with polyatomic molecules. We measure the spontaneous, radiative lifetime of this bending mode state to be ∼0.7 s.

4.
Phys Rev Lett ; 127(26): 263002, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029484

RESUMO

We present a robust, continuous molecular decelerator that employs high magnetic fields and few optical pumping steps. CaOH molecules are slowed, accumulating at low velocities in a range sufficient for loading both magnetic and magneto-optical traps. During the slowing, the molecules scatter only seven photons, removing around 8 K of energy. Because large energies can be removed with only a few spontaneous radiative decays, this method can in principle be applied to nearly any paramagnetic atomic or molecular species, opening a general path to trapping of complex molecules.

5.
Phys Rev Lett ; 124(13): 133201, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302203

RESUMO

We demonstrate a 1D magneto-optical trap of the polar free radical calcium monohydroxide (CaOH). A quasiclosed cycling transition is established to scatter ∼10^{3} photons per molecule, predominantly limited by interaction time. This enables radiative laser cooling of CaOH while compressing the molecular beam, leading to a significant increase in on axis beam brightness and reduction in temperature from 8.4 to 1.4 mK.

6.
Angew Chem Int Ed Engl ; 55(16): 4957-61, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26992036

RESUMO

Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from σ=4.7(3.0)×10(-18) cm(2) to σ>5×10(-16) cm(2). Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules.

7.
Science ; 382(6671): 665-668, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943899

RESUMO

Ultracold polyatomic molecules are promising candidates for experiments in quantum science and precision searches for physics beyond the Standard Model. A key requirement is the ability to achieve full quantum control over the internal structure of the molecules. In this work, we established coherent control of individual quantum states in calcium monohydroxide (CaOH) and demonstrated a method for searching for the electron electric dipole moment (eEDM). Optically trapped, ultracold CaOH molecules were prepared in a single quantum state, polarized in an electric field, and coherently transferred into an eEDM-sensitive state where an electron spin precession measurement was performed. To extend the coherence time, we used eEDM-sensitive states with tunable, near-zero magnetic field sensitivity. Our results establish a path for eEDM searches with trapped polyatomic molecules.

8.
Appl Biosaf ; 26(2): 80-89, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36034691

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has caused a global shortage of single-use N95 filtering facepiece respirators (FFRs). A combination of heat and humidity is a promising method for N95 FFR decontamination in crisis-capacity conditions; however, an understanding of its effect on viral inactivation and N95 respirator function is crucial to achieving effective decontamination. Objective: We reviewed the scientific literature on heat-based methods for decontamination of N95 FFRs contaminated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and viral analogues. We identified key parameters for SARS-CoV-2 bioburden reduction while preserving N95 fit and filtration, as well as methods that are likely ineffective. Key Findings: Viral inactivation by humid heat is highly sensitive to temperature, humidity, duration of exposure, and the local microenvironment (e.g., dried saliva). A process that achieves temperatures of 70-85°C and relative humidity >50% for at least 30 min is likely to inactivate SARS-CoV-2 (>3-log reduction) on N95 respirators while maintaining fit and filtration efficiency for three to five cycles. Dry heat is significantly less effective. Microwave-generated steam is another promising approach, although less studied, whereas 121°C autoclave treatments may damage some N95 FFRs. Humid heat will not inactivate all microorganisms, so reprocessed N95 respirators should be reused only by the original user. Conclusions: Effective bioburden reduction on N95 FFRs during the COVID-19 pandemic requires inactivation of SARS-CoV-2 and preservation of N95 fit and filtration. The literature suggests that humid heat protocols can achieve effective bioburden reduction. Proper industrial hygiene, biosafety controls, and clear protocols are required to reduce the risks of N95 reprocessing and reuse.

9.
Science ; 369(6509): 1366-1369, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913101

RESUMO

Ultracold polyatomic molecules have potentially wide-ranging applications in quantum simulation and computation, particle physics, and quantum chemistry. For atoms and small molecules, direct laser cooling has proven to be a powerful tool for quantum science in the ultracold regime. However, the feasibility of laser-cooling larger, nonlinear polyatomic molecules has remained unknown because of their complex structure. We laser-cooled the symmetric top molecule calcium monomethoxide (CaOCH3), reducing the temperature of ~104 molecules from 22 ± 1 millikelvin to 1.8 ± 0.7 millikelvin in one dimension and state-selectively cooling two nuclear spin isomers. These results demonstrate that the use of proper ro-vibronic transitions enables laser cooling of nonlinear molecules, thereby opening a path to efficient cooling of chiral molecules and, eventually, optical tweezer arrays of complex polyatomic species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa