Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Mol Biol Lett ; 24: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754354

RESUMO

BACKGROUND: Breast tumor growth and recurrence are driven by an infrequent population of breast tumor-initiating cells (BTIC). We and others have reported that the frequency of BTIC is orders of magnitude higher when breast tumor cells are propagated in vitro as clonal spheres, termed tumorspheres, by comparison to adherent cells. We exploited the latter to screen > 35,000 small molecules to identify agents capable of targeting BTIC. We unexpectedly discovered that selective antagonists of serotonin signaling were among the hit compounds. To better understand the relationship between serotonin and BTIC we expanded our analysis to include monoamine oxidase-A (MAO-A), an enzyme that metabolizes serotonin. METHODS: We used the Nanostring technology and Western blotting to determine whether MAO-A is expressed in human breast tumor cell lines cultured as tumorspheres by comparison to those grown as adherent cells. We then determined whether MAO-A activity is required for tumorsphere formation, a surrogate in vitro assay for BTIC, by assessing whether selective MAO-A inhibitors affect the frequency of tumorsphere-forming cells. To learn whether MAO-A expression in breast tumor cells is associated with other reported properties of BTIC such as anticancer drug resistance or breast tumor recurrence, we performed differential gene expression analyses using publicly available transcriptomic datasets. RESULTS: Tumorspheres derived from human breast tumor cell lines representative of every breast cancer clinical subtype displayed increased expression of MAO-A transcripts and protein by comparison to adherent cells. Surprisingly, inhibition of MAO-A activity with selective inhibitors reduced the frequency of tumorsphere-forming cells. We also found that increased MAO-A expression is a common feature of human breast tumor cell lines that have acquired anticancer drug resistance and is associated with poor recurrence-free survival (RFS) in patients that experienced high-grade, ER-negative (ER-) breast tumors. CONCLUSIONS: Our data suggests that MAO-A activity is required for tumorsphere formation and that its expression in breast tumor cells is associated with BTIC-related properties. The discovery that a selective MAO-A inhibitor targets tumorsphere-forming cells with potencies in the nanomolar range provides the first evidence of this agent's anticancer property. These data warrant further investigation of the link between MAO-A and BTIC.


Assuntos
Neoplasias da Mama/metabolismo , Monoaminoxidase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Monoaminoxidase/análise , Monoaminoxidase/genética , Células-Tronco Neoplásicas/patologia , Serotonina/metabolismo
2.
Biochim Biophys Acta ; 1849(12): 1432-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514431

RESUMO

Low oxygen tension (hypoxia) is a common characteristic of solid tumors and strongly correlates with poor prognosis and resistance to treatment. In response to hypoxia, cells initiate a cascade of transcriptional events regulated by the hypoxia inducible factor-1 (HIF-1) heterodimer. Since the oxygen-sensitive HIF-1α subunit is stabilized during hypoxia, it functions as the regulatory subunit of the protein. To date, while the mechanisms governing HIF-1α protein stabilization and function have been well studied, those governing HIF1A gene expression are not fully understood. However, recent studies have suggested that methylation of a HIF-1 binding site in the HIF1A promoter prevents its autoregulation. Here we report that the POZ-ZF transcription factor Kaiso modulates HIF1A gene expression by binding to the methylated HIF1A promoter in a region proximal to the autoregulatory HIF-1 binding site. Interestingly, Kaiso's regulation of HIF1A occurs primarily during hypoxia, which is consistent with the finding that Kaiso protein levels peak after 4 h of hypoxic incubation and return to normoxic levels after 24 h. Our data thus support a role for Kaiso in fine-tuning HIF1A gene expression after extended periods of hypoxia.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Proteínas de Neoplasias/fisiologia , Fatores de Transcrição/fisiologia , Neoplasias da Mama/genética , Hipóxia Celular/genética , Neoplasias do Colo/genética , Conjuntos de Dados como Assunto/estatística & dados numéricos , Feminino , Redes Reguladoras de Genes , Células HCT116 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Transcrição Gênica
3.
BMC Cancer ; 16: 555, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27469239

RESUMO

BACKGROUND: Lymph node (LN) status is the most important prognostic variable used to guide ER positive (+) breast cancer treatment. While a positive nodal status is traditionally associated with a poor prognosis, a subset of these patients respond well to treatment and achieve long-term survival. Several gene signatures have been established as a means of predicting outcome of breast cancer patients, but the development and indication for use of these assays varies. Here we compare the capacity of two approved gene signatures and a third novel signature to predict outcome in distinct LN negative (-) and LN+ populations. We also examine biological differences between tumours associated with LN- and LN+ disease. METHODS: Gene expression data from publically available data sets was used to compare the ability of Oncotype DX and Prosigna to predict Distant Metastasis Free Survival (DMFS) using an in silico platform. A novel gene signature (Ellen) was developed by including patients with both LN- and LN+ disease and using Prediction Analysis of Microarrays (PAM) software. Gene Set Enrichment Analysis (GSEA) was used to determine biological pathways associated with patient outcome in both LN- and LN+ tumors. RESULTS: The Oncotype DX gene signature, which only used LN- patients during development, significantly predicted outcome in LN- patients, but not LN+ patients. The Prosigna gene signature, which included both LN- and LN+ patients during development, predicted outcome in both LN- and LN+ patient groups. Ellen was also able to predict outcome in both LN- and LN+ patient groups. GSEA suggested that epigenetic modification may be related to poor outcome in LN- disease, whereas immune response may be related to good outcome in LN+ disease. CONCLUSIONS: We demonstrate the importance of incorporating lymph node status during the development of prognostic gene signatures. Ellen may be a useful tool to predict outcome of patients regardless of lymph node status, or for those with unknown lymph node status. Finally we present candidate biological processes, unique to LN- and LN+ disease, that may indicate risk of relapse.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metástase Linfática/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática/patologia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Modelos de Riscos Proporcionais , Receptor ErbB-2/biossíntese , Receptores de Estrogênio/biossíntese , Tamoxifeno/uso terapêutico
4.
J Neurooncol ; 126(1): 57-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26498281

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with average disease relapse at 9 months and median survival rarely extending beyond 15 months. Brain tumor stem cells (BTSCs) have been implicated in not only initiating GBM but also conferring resistance to therapy. However, it is not clear whether the BTSC population that initiates tumor growth is also responsible for GBM recurrence. In this study, we have developed a novel in vitro treatment model to profile the evolution of primary treatment-naïve GBM BTSCs through chemoradiotherapy. We report that our in vitro model enriched for a CD15+/CD133- BTSC population, mirroring the phenotype of BTSCs in recurrent GBM. We also show that in vitro treatment increased stem cell gene expression as well as self-renewal capacity of primary GBMs. In addition, the chemoradiotherapy-refractory gene signature obtained from gene expression profiling identified a hyper-aggressive subtype of glioma. The delivery of in vitro chemoradiotherapy to primary GBM BTSCs models several aspects of recurrent GBM biology, and could be used as a discovery and drug-screening platform to uncover new biological drivers and therapeutic targets in GBM.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Antígenos CD/metabolismo , Antinematódeos/farmacologia , Antineoplásicos/farmacologia , Autorrenovação Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
5.
Stem Cells ; 31(7): 1266-77, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592496

RESUMO

Brain tumors represent the leading cause of childhood cancer mortality, of which medulloblastoma (MB) is the most frequent malignant tumor. Recent studies have demonstrated the presence of several MB molecular subgroups, each distinct in terms of prognosis and predicted therapeutic response. Groups 1 and 2 are characterized by relatively good clinical outcomes and activation of the Wnt and Shh pathways, respectively. In contrast, groups 3 and 4 ("non-Shh/Wnt MBs") are distinguished by metastatic disease, poor patient outcome, and lack a molecular pathway phenotype. Current gene expression platforms have not detected brain tumor-initiating cell (BTIC) self-renewal genes in groups 3 and 4 MBs as BTICs typically comprise a minority of tumor cells and may therefore go undetected on bulk tumor analyses. Since increasing BTIC frequency has been associated with increasing tumor aggressiveness and poor patient outcome, we investigated the subgroup-specific gene expression profile of candidate stem cell genes within 251 primary human MBs from four nonoverlapping MB transcriptional databases (Amsterdam, Memphis, Toronto, Boston) and 74 NanoString-subgrouped MBs (Vancouver). We assessed the functional relevance of two genes, FoxG1 and Bmi1, which were significantly enriched in non-Shh/Wnt MBs and showed these genes to mediate MB stem cell self-renewal and tumor initiation in mice. We also identified their transcriptional regulation through reciprocal promoter occupancy in CD15+ MB stem cells. Our work demonstrates the application of stem cell data gathered from genomic platforms to guide functional BTIC assays, which may then be used to develop novel BTIC self-renewal mechanisms amenable to therapeutic targeting.


Assuntos
Neoplasias Cerebelares/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Meduloblastoma/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Fatores de Transcrição Forkhead/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 1/genética , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Transcriptoma
6.
BMC Cancer ; 14: 871, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25420785

RESUMO

BACKGROUND: Human breast cancer represents a significantly heterogeneous disease. Global gene expression profiling measurements have been used to classify tumors into multiple molecular subtypes. The capacity to define subtypes of breast tumors provides a framework to enable improved understanding of the mechanisms of breast oncogenesis, as well as to provide opportunities for improved therapeutic intervention in patients. METHODS: We used publicly available gene expression profiling data to identify 'estrogen independent' genes in estrogen receptor alpha (ER+) breast tumors, and subsequently identified 6 subgroups of ER+breast tumors. RESULTS: Each of the 6 identified subgroups exhibited distinct clinical behaviors and biology. Patients whose tumors comprised subgroups 2,5&6 experienced excellent long-term survival, whereas those patients whose tumors belonged to subgroups 1&4 experienced much poorer survival. Breast tumor cell lines representative of the different subgroups responded to therapeutic compounds in accordance with their subgroup classification. CONCLUSIONS: These data support the existence of 6 distinct subgroups of ER+breast cancer and suggest that knowledge of the ER+subgroup status of patient samples have the potential to guide therapy choice.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Receptores de Estrogênio/biossíntese , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
7.
BMC Musculoskelet Disord ; 15: 446, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25526985

RESUMO

BACKGROUND: The objective of this study was to identify leukocyte cell types found within the synovia of patients with seronegative spondylarthropathies (SpA), such as ankylosing spondylitis (AS), using transcription based analyses. METHODS: Leukocyte transcriptional profiles obtained from the NCBI's gene expression omnibus and prediction analysis of microarrays (PAM) was used to identify 25-gene leukocyte metagenes. Subsequently, transcriptional profiles from murine and clinical models of AS and SpA were interrogated to characterize the local infiltration of leukocytes in SpA synovia. RESULTS: Analysis of a proteoglycan-induced murine model of AS reveals infiltration of dendritic cells, CD4+ T cells, monocytes, and natural killer cells to the spine. In human SpA and AS patients, transcriptional analysis of synovial biopsies revealed local infiltration of dendritic cells and CD4+ T cells. CONCLUSIONS: We identified leukocyte cell types that infiltrated the synovial of SpA patients. Our results imply a role for dendritic cells and CD4+ T cells in the local inflammation that underlies pathogenesis in patients with SpA.


Assuntos
Imunidade Celular/imunologia , Leucócitos/imunologia , Espondiloartropatias/sangue , Espondiloartropatias/imunologia , Líquido Sinovial/imunologia , Animais , Humanos , Leucócitos/metabolismo , Camundongos , Espondiloartropatias/patologia , Líquido Sinovial/metabolismo
8.
J Nucl Med ; 65(1): 100-108, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050111

RESUMO

The overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative N-(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI). In this study, the diagnostic and therapeutic (theranostic) potential of N-(pyridine-4-carbonyl)-d-Ala-boroPro-based metal-chelating DOTA-FAPIs was evaluated. Methods: Three DOTA-FAPIs, PNT6555, PNT6952, and PNT6522, were synthesized and characterized with respect to potency and selectivity toward soluble and cell membrane FAP; cellular uptake of the Lu-chelated analogs; biodistribution and pharmacokinetics in mice xenografted with human embryonic kidney cell-derived tumors expressing mouse FAP; the diagnostic potential of 68Ga-chelated DOTA-FAPIs by direct organ assay and small-animal PET; the antitumor activity of 177Lu-, 225Ac-, or 161Tb-chelated analogs using human embryonic kidney cell-derived tumors expressing mouse FAP; and the tumor-selective delivery of 177Lu-chelated DOTA-FAPIs via direct organ assay and SPECT. Results: DOTA-FAPIs and their natGa and natLu chelates exhibited potent inhibition of human and mouse sources of FAP and greatly reduced activity toward closely related prolyl endopeptidase and dipeptidyl peptidase 4. 68Ga-PNT6555 and 68Ga-PNT6952 showed rapid renal clearance and continuous accumulation in tumors, resulting in tumor-selective exposure at 60 min after administration. 177Lu-PNT6555 was distinguished from 177Lu-PNT6952 and 177Lu-PNT6522 by significantly higher tumor accumulation over 168 h. In therapeutic studies, all 3 177Lu-DOTA-FAPIs exhibited significant antitumor activity at well-tolerated doses, with 177Lu-PNT6555 producing the greatest tumor growth delay and animal survival. 225Ac-PNT6555 and 161Tb-PNT6555 were similarly efficacious, producing 80% and 100% survival at optimal doses, respectively. Conclusion: PNT6555 has potential for clinical translation as a theranostic agent in FAP-positive cancer.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Humanos , Animais , Camundongos , Distribuição Tecidual , Linhagem Celular Tumoral , Piridinas
9.
Clin Cancer Res ; 29(4): 791-804, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441800

RESUMO

PURPOSE: Leukemia inhibitory factor (LIF) is a multifunctional cytokine with numerous reported roles in cancer and is thought to drive tumor development and progression. Characterization of LIF and clinical-stage LIF inhibitors would increase our understanding of LIF as a therapeutic target. EXPERIMENTAL DESIGN: We first tested the association of LIF expression with transcript signatures representing multiple processes regulating tumor development and progression. Next, we developed MSC-1, a high-affinity therapeutic antibody that potently inhibits LIF signaling and tested it in immune competent animal models of cancer. RESULTS: LIF was associated with signatures of tumor-associated macrophages (TAM) across 7,769 tumor samples spanning 22 solid tumor indications. In human tumors, LIF receptor was highly expressed within the macrophage compartment and LIF treatment drove macrophages to acquire immunosuppressive capacity. MSC-1 potently inhibited LIF signaling by binding an epitope that overlaps with the gp130 receptor binding site on LIF. MSC-1 showed monotherapy efficacy in vivo and drove TAMs to acquire antitumor and proinflammatory function in syngeneic colon cancer mouse models. Combining MSC-1 with anti-PD1 leads to strong antitumor response and a long-term tumor-free survival in a significant proportion of treated mice. CONCLUSIONS: Overall, our findings highlight LIF as a therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Humanos , Camundongos , Terapia de Imunossupressão , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
10.
PLoS One ; 13(7): e0199570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30020957

RESUMO

Axons normally degenerate during development of the mammalian nervous system, but dysregulation of the same genetically-encoded destructive cellular machinery can destroy crucial structures during adult neurodegenerative diseases. Nerve growth factor (NGF) withdrawal from dorsal root ganglia (DRG) axons is a well-established in vitro experimental model for biochemical and cell biological studies of developmental degeneration. Definitive methods for measuring axon degeneration have been lacking and here we report a novel method of axon degeneration quantification from bulk cultures of DRG that enables objective and automated measurement of axonal density over the entire field of radial axon outgrowth from the ganglion. As proof of principal, this new method, written as an R script called Axoquant 2.0, was used to examine the role of extracellular Ca2+ in the execution of cytoskeletal disassembly during degeneration of NGF-deprived DRG axons. This method can be easily applied to examine degenerative or neuroprotective effects of gene manipulations and pharmacological interventions.


Assuntos
Axônios/metabolismo , Neurônios/metabolismo , Axônios/patologia , Biomarcadores , Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Células Cultivadas , Ácido Egtázico/farmacologia , Imunofluorescência , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Imagem Molecular/métodos , Fator de Crescimento Neural/metabolismo , Neurônios/patologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa