Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Syst Biol ; 15(2): e8513, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777893

RESUMO

Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.


Assuntos
Proteínas/genética , Proteoma/genética , Distribuição Tecidual/genética , Transcriptoma/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
2.
Physiol Plant ; 168(3): 630-647, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31268560

RESUMO

In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.


Assuntos
Adenosina Trifosfatases/genética , Evolução Biológica , Duplicação Gênica , Proteínas de Plantas/genética , Rodófitas/genética , Viridiplantae/genética , Filogenia , Plastídeos
3.
Proc Natl Acad Sci U S A ; 113(34): E5082-9, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506796

RESUMO

The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Diterpenos/metabolismo , Euphorbia/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Antineoplásicos Fitogênicos/química , Clonagem Molecular , Ciclização , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/química , Euphorbia/genética , Euphorbia/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fenilpropionatos/química , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
4.
Plant J ; 89(3): 429-441, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801964

RESUMO

Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.


Assuntos
Alquil e Aril Transferases/genética , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Abietanos/química , Abietanos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Diterpenos/química , Diterpenos/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Perfilação da Expressão Gênica/métodos , Liases Intramoleculares/metabolismo , Estrutura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Família Multigênica , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Homologia de Sequência de Aminoácidos , Tripterygium/enzimologia
5.
Mol Syst Biol ; 13(3): 916, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28254760

RESUMO

To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.


Assuntos
Glutationa/metabolismo , Lipoproteínas/metabolismo , Metabolômica/métodos , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Serina/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Genoma , Glicina/sangue , Humanos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Modelagem Computacional Específica para o Paciente , Serina/sangue , Serina/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 112(34): E4689-96, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261321

RESUMO

There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.


Assuntos
Genoma Fúngico , Microfluídica , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Metab Eng ; 39: 19-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815194

RESUMO

Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.


Assuntos
Ácidos/química , Adaptação Fisiológica/genética , Evolução Molecular Direcionada/métodos , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Regulação Fúngica da Expressão Gênica/genética , Melhoramento Genético/métodos , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Syst Biol ; 12(4): 862, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27044256

RESUMO

Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Análise de Sequência de RNA/métodos , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Humanos , Modelos Biológicos , Especificidade de Órgãos
9.
Mol Syst Biol ; 12(10): 883, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27951527

RESUMO

An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Linhagem Celular , Expressão Gênica , Humanos , Proteoma/genética , Proteoma/metabolismo
10.
Nucleic Acids Res ; 43(14): 6787-98, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26117540

RESUMO

Understanding the normal state of human tissue transcriptome profiles is essential for recognizing tissue disease states and identifying disease markers. Recently, the Human Protein Atlas and the FANTOM5 consortium have each published extensive transcriptome data for human samples using Illumina-sequenced RNA-Seq and Heliscope-sequenced CAGE. Here, we report on the first large-scale complex tissue transcriptome comparison between full-length versus 5'-capped mRNA sequencing data. Overall gene expression correlation was high between the 22 corresponding tissues analyzed (R > 0.8). For genes ubiquitously expressed across all tissues, the two data sets showed high genome-wide correlation (91% agreement), with differences observed for a small number of individual genes indicating the need to update their gene models. Among the identified single-tissue enriched genes, up to 75% showed consensus of 7-fold enrichment in the same tissue in both methods, while another 17% exhibited multiple tissue enrichment and/or high expression variety in the other data set, likely dependent on the cell type proportions included in each tissue sample. Our results show that RNA-Seq and CAGE tissue transcriptome data sets are highly complementary for improving gene model annotations and highlight biological complexities within tissue transcriptomes. Furthermore, integration with image-based protein expression data is highly advantageous for understanding expression specificities for many genes.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Bases de Dados de Proteínas , Genômica/métodos , Humanos , Imuno-Histoquímica , Anotação de Sequência Molecular , Proteoma/metabolismo , Distribuição Tecidual
11.
Nucleic Acids Res ; 43(7): e49, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25618848

RESUMO

We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Vetores Genéticos , Hibridização de Ácido Nucleico
12.
Mol Biol Evol ; 32(5): 1268-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25633377

RESUMO

The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Marsupiais/genética , Animais , Carnivoridade , Genoma , Filogenia , Elementos Nucleotídeos Curtos e Dispersos/genética , Tasmânia
13.
Mol Cell Proteomics ; 13(2): 397-406, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24309898

RESUMO

Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.


Assuntos
Anticorpos/farmacologia , Expressão Gênica , Genômica/métodos , Especificidade de Órgãos/genética , Proteômica/métodos , Transcriptoma , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Integração de Sistemas , Análise Serial de Tecidos
14.
BMC Genomics ; 16: 475, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109061

RESUMO

BACKGROUND: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level. RESULTS: Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction. CONCLUSIONS: Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Proteoma/genética , Transcriptoma/genética , Anticorpos/genética , Perfilação da Expressão Gênica , Humanos , Proteoma/metabolismo
15.
Mol Biol Evol ; 31(6): 1353-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24667925

RESUMO

Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms.


Assuntos
Cromossomos de Mamíferos , DNA/análise , Fluxo Gênico , Ursidae/genética , Cromossomo Y , Animais , Evolução Molecular , Feminino , Especiação Genética , Variação Genética , Haplótipos , Masculino , Repetições de Microssatélites , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Fatores Sexuais , Irmãos , Ursidae/classificação
16.
FASEB J ; 28(7): 2901-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648543

RESUMO

Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.


Assuntos
Anticorpos/genética , Anticorpos/metabolismo , Fígado/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Idoso , Ductos Biliares/metabolismo , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de RNA/métodos
17.
Microb Cell Fact ; 14: 116, 2015 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-26253003

RESUMO

BACKGROUND: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. RESULTS: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h(-1), respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase, and RPD3 encoding a histone deacetylase. Reverse engineering of the non-evolved Pdc negative strain through introduction of the MTH1 (81D) allele restored its growth on glucose at a maximum specific rate of 0.053 h(-1) in minimal medium with 2% glucose, and the CIT1 deletion in the reverse engineered strain further increased the maximum specific growth rate to 0.069 h(-1). CONCLUSIONS: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Histona Desacetilases/genética , Piruvato Descarboxilase/deficiência , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Meios de Cultura/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Histona Desacetilases/metabolismo , Mutação , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Proteomics ; 14(21-22): 2498-507, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25175928

RESUMO

Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics.


Assuntos
Vesícula Biliar/metabolismo , Proteoma/análise , Proteoma/genética , Transcriptoma , Vesícula Biliar/química , Vesícula Biliar/ultraestrutura , Perfilação da Expressão Gênica/métodos , Humanos , Proteoma/metabolismo , Proteômica/métodos , Biologia de Sistemas
19.
J Proteome Res ; 13(4): 2019-27, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24579871

RESUMO

An important part of the Human Proteome Project is to characterize the protein complement of the genome with antibody-based profiling. Within the framework of this effort, a new version 12 of the Human Protein Atlas ( www.proteinatlas.org ) has been launched, including transcriptomics data for 27 tissues and 44 cell lines to complement the protein expression data from antibody-based profiling. Besides the extensive addition of transcriptomics data, the Human Protein Atlas now contains antibody-based protein profiles for 82% of the 20 329 putative protein-coding genes. The comprehensive data resulting from RNA-seq analysis and antibody-based profiling performed within the Human Protein Atlas as well as information from UniProt were used to generate evidence summary scores for each of the 20 329 genes, of which 94% now have experimental evidence at least at transcript level. The evidence scores for all individual genes are displayed with regards to both RNA- and antibody-based protein profiles, including chromosome-centric visualizations. An analysis of the human chromosome 19 shows that ∼43% of the genes are expressed at the transcript level in all 27 tissues analyzed, suggesting a "house-keeping" function, while 12% of the genes show a more tissue-specific pattern with enriched expression in one of the analyzed tissues only.


Assuntos
Anticorpos/genética , Cromossomos Humanos Par 19/genética , Proteoma/genética , Proteômica/métodos , RNA Mensageiro/genética , Anticorpos/análise , Anticorpos/química , Anticorpos/metabolismo , Perfilação da Expressão Gênica/métodos , Genoma Humano , Projeto Genoma Humano , Humanos , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
20.
J Proteome Res ; 13(11): 5106-19, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219818

RESUMO

White adipose tissue (WAT) has a major role in the progression of obesity. Here, we combined data from RNA-Seq and antibody-based immunohistochemistry to describe the normal physiology of human WAT obtained from three female subjects and explored WAT-specific genes by comparing WAT to 26 other major human tissues. Using the protein evidence in WAT, we validated the content of a genome-scale metabolic model for adipocytes. We employed this high-quality model for the analysis of subcutaneous adipose tissue (SAT) gene expression data obtained from subjects included in the Swedish Obese Subjects Sib Pair study to reveal molecular differences between lean and obese individuals. We integrated SAT gene expression and plasma metabolomics data, investigated the contribution of the metabolic differences in the mitochondria of SAT to the occurrence of obesity, and eventually identified cytosolic branched-chain amino acid (BCAA) transaminase 1 as a potential target that can be used for drug development. We observed decreased glutaminolysis and alterations in the BCAAs metabolism in SAT of obese subjects compared to lean subjects. We also provided mechanistic explanations for the changes in the plasma level of BCAAs, glutamate, pyruvate, and α-ketoglutarate in obese subjects. Finally, we validated a subset of our model-based predictions in 20 SAT samples obtained from 10 lean and 10 obese male and female subjects.


Assuntos
Tecido Adiposo/metabolismo , Expressão Gênica , Obesidade/metabolismo , Proteoma/metabolismo , Tecido Adiposo Branco/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Feminino , Humanos , Peso Corporal Ideal , Ácidos Cetoglutáricos/metabolismo , Masculino , Sobrepeso/metabolismo , Proteoma/análise , Proteoma/genética , Reprodutibilidade dos Testes , Gordura Subcutânea/metabolismo , Gordura Subcutânea/fisiologia , Suécia , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa