Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 31(4): e02296, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33440029

RESUMO

Variable retention (VR) has been adopted globally as an alternative to more intensive forms of regeneration harvest. By retaining live trees within harvest units, VR seeks balance among the commodity, ecological, and aesthetic values of managed forests. Achieving these multiple, often competing objectives requires an understanding of how level and spatial pattern of retention shape the abundance, growth, and mortality of regenerating and retained trees. Using long-term (18-19 yr) data from a regional-scale VR experiment, we explore the individual and interactive effects of retention level (15% vs. 40% of initial basal area) and pattern (dispersed vs. aggregated) on the post-harvest dynamics of forests of differing structure and seral composition. Level and pattern of retention imposed trade-offs for the density and growth of regenerating trees (≥0.1 m tall, <5 cm dbh) and ingrowth (trees attaining 5 cm during the study). Greater retention led to greater density of late-seral regeneration, but lower density of early-seral ingrowth, and slower growth of late-seral ingrowth. Dispersed retention enhanced the density of early- and late-seral regeneration (compared to aggregated treatments), but reduced the growth of early-seral ingrowth. We also observed trade-offs for retained trees. Lower retention enhanced the growth of smaller trees (<25 cm dbh), particularly in dispersed settings, but reduced the survival of larger trees, which were more susceptible to windthrow. Greater retention reduced the growth, but enhanced the survival of smaller trees. Pattern imposed similar trade-offs, with dispersed retention enhancing growth, but reducing survival of small trees. Finally, level and pattern resulted in trade-offs for productivity of regenerating vs. retained-tree cohorts. Ingrowth productivity was greater at lower retention and in aggregated treatments; retained-tree productivity was greater at higher retention and in dispersed treatments. Our results provide a unique, long-term perspective on the sensitivity of tree regeneration, growth, and mortality to key structural elements of VR systems. Strong responses to level and pattern of retention produce trade-offs for different ecological or resource objectives. Balancing these objectives may require the combined use of aggregates, dispersed retention, and clearings, to mimic the spatial heterogeneity of habitats, physical structures, and resource conditions that are produced by natural disturbances.


Assuntos
Florestas , Árvores , Ecossistema
2.
Ecol Appl ; 29(3): e01860, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703273

RESUMO

Woody-plant encroachment represents a global threat to grasslands. Although the causes and consequences of this regime shift have received substantial attention, the processes that constrain reassembly of the grassland state remain poorly understood. We experimentally tested two potentially important controls on reassembly, the past influence of trees and the effects of fire, in conifer-invaded grasslands (mountain meadows) of western Oregon. Previously, we had reconstructed the history of tree invasion at fine spatial and temporal resolution. Using small subplots (10 × 10 m) nested within larger (1-ha) experimental plots, we characterized the fine-scale mosaic of encroachment states, ranging from remnant meadow openings (minimally altered by trees) to century-old forests (lacking meadow species). Subsequently, we removed trees from six plots, of which three were broadcast burned and three remained unburned (except for localized burn piles). Within each plot, subplots were sampled before and periodically after tree removal to quantify the individual and interactive effects of past tree influence and fire on grassland community reassembly. Adjacent, uninvaded meadows served as reference sites. "Past tree influence" was defined as the multivariate (structural or compositional) distance of subplots to reference meadows prior to tree removal. "Reassembly" was defined as the distance, or change in distance, to reference meadows at final sampling. Consistent with theory, we observed greater reassembly of plant community structure than of composition, as loss of meadow specialists was offset by establishment of disturbance-adapted meadow generalists of similar growth form. Nevertheless, eight years after tree removal, most subplots remained structurally and compositionally distinct from reference meadows. Furthermore, fire had both destabilizing and inhibitory effects: it reduced survival of meadow specialists across the range of encroachment states and, where past tree influence was greater, it stalled reassembly by promoting expansion of a highly competitive native meadow sedge. The slow pace of reassembly, despite abundant open space, suggests strong seed limitation: a condition exacerbated by burning. We present a novel test of the importance of past tree influence and fire for restoration of tree-invaded grasslands, offering insights into how constraints on community reassembly vary along a continuum of tree-altered states.


Assuntos
Incêndios , Árvores , Florestas , Pradaria , Oregon
3.
Environ Manage ; 59(2): 338-353, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27848001

RESUMO

Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Agricultura Florestal/métodos , Florestas , Árvores , Comportamento Cooperativo , Tomada de Decisões , Ecologia , Estados Unidos
4.
Ecol Appl ; 26(8): 2493-2504, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787926

RESUMO

Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives.


Assuntos
Biodiversidade , Besouros , Florestas , Animais , Austrália , Conservação dos Recursos Naturais , Agricultura Florestal , Minnesota , Suécia , Tasmânia , Árvores , Washington
5.
Ecol Appl ; 22(8): 2049-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23387109

RESUMO

In many regions of the world, variable retention has replaced clear-cutlogging as the principal method of regeneration harvest. Partial retention of the overstory is thought to ensure greater continuity of the species and ecological processes that characterize older forests. Level (amount) and spatial pattern of overstory retention are two basic elements of forest structure that can be manipulated to achieve specific ecological or silvicultural objectives. However, experiments that elucidate the relative importance of retention level and pattern (or their interaction) are rare. Here we assess long-term (> 10 yr) responses of forest understories to experimental harvests of mature coniferous forests replicated at five sites in the Pacific Northwest (PNW). Treatments contrast both the level of retention (40% vs. 15% of original basal area) and its spatial distribution (dispersed vs. aggregated in 1-ha patches). For most vascular plant groups (early seral, forest generalist, and late seral), postharvest changes in cover and richness were reduced at higher levels of retention and in dispersed relative to aggregated treatments. Although retained forest patches were stable, changes in adjacent harvested (cleared) areas were significantly greater than in dispersed treatments. Late-seral herbs were highly sensitive to level and pattern of retention, with extirpations most frequent in the cleared areas of aggregated treatments and at low levels of dispersed retention. In contrast, early-seral species were most abundant in these environments. Forest-floor bryophytes exhibited large and persistent declines regardless of treatment, suggesting that threshold levels of disturbance or stress were exceeded. Our results indicate that 15% retention (the minimum standard on federal forestlands in the PNW) is insufficient to retain the abundance or diversity of species characteristic of late-seral forests. Although 1-ha aggregates provide refugia, they are susceptible to edge effects or stochastic processes; thus, smaller aggregates are unlikely to serve this function. The ability to achieve multiple ecological or silvicultural objectives with variable retention will require the spatial partitioning of habitats to include dispersed retention and larger undisturbed aggregates along with cleared areas.


Assuntos
Agricultura Florestal/métodos , Árvores/fisiologia , Ecossistema , Monitoramento Ambiental , Noroeste dos Estados Unidos , Especificidade da Espécie , Árvores/classificação
6.
Ecol Appl ; 22(2): 425-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22611845

RESUMO

Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.


Assuntos
Ecossistema , Incêndios , Poaceae/crescimento & desenvolvimento , Árvores/fisiologia , Conservação dos Recursos Naturais , Monitoramento Ambiental , Oregon , Solo/química
8.
Ecol Lett ; 13(10): 1300-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20735464

RESUMO

It is suggested that diversity destabilizes individual populations within communities; however, generalizations are problematic because effects of diversity can be confounded by variation attributable to community type, life history or successional stage. We examined these complexities using a 40-year record of reassembly in forest herb communities in two clearcut watersheds in the Andrews Long-term Ecological Research Site (Oregon, USA). Population stability was higher among forest than colonizing species and increased with successional stage. Thus, life history and successional stage may explain some of the variability in diversity-stability relationships found previously. However, population stability was positively related to diversity and this relationship held for different forest communities, for species with contrasting life histories, and for different successional stages. Positive relationships between diversity and population stability can arise if diversity has facilitative effects, or if stability is a precursor, rather than a response, to diversity.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Árvores , Modelos Biológicos , Oregon , Dinâmica Populacional , Fatores de Tempo
9.
Ecol Appl ; 20(2): 311-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20405790

RESUMO

Habitat distribution models are increasingly used to predict the potential distributions of invasive species and to inform monitoring. However, these models assume that species are in equilibrium with the environment, which is clearly not true for most invasive species. Although this assumption is frequently acknowledged, solutions have not been adequately addressed. There are several potential methods for improving habitat distribution models. Models that require only presence data may be more effective for invasive species, but this assumption has rarely been tested. In addition, combining modeling types to form "ensemble" models may improve the accuracy of predictions. However, even with these improvements, models developed for recently invaded areas are greatly influenced by the current distributions of species and thus reflect near- rather than long-term potential for invasion. Larger scale models from species' native and invaded ranges may better reflect long-term invasion potential, but they lack finer scale resolution. We compared logistic regression (which uses presence/absence data) and two presence-only methods for modeling the potential distributions of three invasive plant species on the Olympic Peninsula in Washington, USA. We then combined the three methods to create ensemble models. We also developed climate envelope models for the same species based on larger scale distributions and combined models from multiple scales to create an index of near- and long-term invasion risk to inform monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models were more accurate than logistic regression for any of the species. Larger scale models predicted much greater areas at risk of invasion. Our index of near- and long-term invasion risk indicates that < 4% of ONP is at high near-term risk of invasion while 67-99% of the Park is at moderate or high long-term risk of invasion. We demonstrate how modeling results can be used to guide the design of monitoring protocols and monitoring results can in turn be used to refine models. We propose that, by using models from multiple scales to predict invasion risk and by explicitly linking model development to monitoring, it may be possible to overcome some of the limitations of habitat distribution models.


Assuntos
Modelos Estatísticos , Desenvolvimento Vegetal , Algoritmos , Ecossistema , Geografia , Modelos Logísticos , Dinâmica Populacional , Estados Unidos
10.
Sci Data ; 7(1): 194, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572035

RESUMO

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Assuntos
Incêndios , Agricultura Florestal , Florestas , Árvores , Bases de Dados como Assunto , Estados Unidos
11.
Ecol Appl ; 18(3): 762-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18488633

RESUMO

Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Incêndios , Desenvolvimento Vegetal , Plantas/classificação , Fatores de Tempo , Washington
12.
Ecology ; 88(11): 2880-90, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18051657

RESUMO

Clonal herbs that attain maximum development in late-seral forest are often assumed to have similar responses to disturbance and to be functionally equivalent. However, little is known about the demographic or physiological responses of these plants to disturbance or to the altered conditions of the post-disturbance environment. Following harvest of a mature coniferous forest, we compared abundance, demographic changes, and physiological acclimation of three clonal herbs (Asarum caudatum, Clintonia uniflora, and Pyrola picta) that differ in belowground morphology and leaf longevity. We measured ramet density, leaf area, and demographic variables (survival, clonal growth, flowering, and seedling establishment) before and for two years after harvest, and in adjacent undisturbed forest. Acclimation to increased solar radiation was assessed two years after harvest by measuring leaf mass per unit area (LMA) and chlorophyll a:b ratios of leaves produced in the current year. Although initial declines in abundance were similar, demographic responses indicate that patterns of recovery varied greatly among species. Two years after logging, ramet survival and clonal growth (production of new ramets) of Clintonia were greater in the harvest area than in the forest. Asarum had lower survival in the harvest area, but greater clonal growth, and Pyrola showed no difference in either survival or growth between environments. Only Asarum produced seedlings, although their survival was low in the harvest area. All species had higher LMA in the harvest area, but only Clintonia (with annual leaves) had a higher chlorophyll a:b ratio, suggesting the greatest potential for acclimation to increased light. Our results demonstrate that forest herbs with greater rhizome plasticity and shorter leaf duration have greater potential to acclimate after disturbance than those with rigid architectures and persistent leaves. Thus, species with comparable successional roles can vary substantially in their demographic and physiological responses to disturbance, with potential consequences for long-term recovery.


Assuntos
Adaptação Fisiológica , Asarum/fisiologia , Clorofila/análise , Meio Ambiente , Pyrola/fisiologia , Árvores/fisiologia , Aclimatação , Asarum/crescimento & desenvolvimento , Clorofila/metabolismo , Liliaceae/crescimento & desenvolvimento , Liliaceae/fisiologia , Fotossíntese/fisiologia , Folhas de Planta , Dinâmica Populacional , Crescimento Demográfico , Pyrola/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Luz Solar , Análise de Sobrevida
13.
Conserv Biol ; 9(5): 1199-1207, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34261255

RESUMO

Taxus brevifolia, a subcanopy tree or shrub in forests of the Pacific Northwest, has been harvested intensively in recent years. With management concerns as an impetus, we examined the distribution and population dynamics of Taxus based on data from the mountains of western Oregon and Washington. Surveys of natural forests, long-term studies of forest recovery following logging, and census data on marked trees in forest stands support the hypothesis that Taxus is a widespread but predominantly late-successional species. Sensitive to fire and slow to recover from disturbance on many sites, Taxus attains maximal basal area and adult stem density in old forests. Colonization of Taxus is often slow in potentially suitable habitats. Conservation of Taxus at the landscape level may require large, unmanaged reserves and maintenance of patches of old forest within managed forests. Long rotations (centuries) between harvest events will enhance the long-term viability of the species. Practices designed to accelerate the development of old-growth forest structure will not benefit Taxus and other species requiring long disturbance-free intervals for recovery. Ecologia del tejo del Pacífico (Taxus brevifolia) en el oeste de Oregon y Washington.


Resumen: Taxus brevifolia, un árbol o arbusto del sotobosque dei Noroeste del Pacífico, ha sido cosechado intensamente en años recientes. Teniendo en cuenta una perspectiva de manejo, examinamos la distribución y dinámica de población de Taxus, en base a datos de las montañas del oeste de Oregon y Washington. Relevamientos de bosques naturales, estudios a largo plazo de recuperación del bosque después de la tala y datos de censos en árboles marcados en rodales de bosques sostienen la hipótesis de que Taxus es una especie de amplia distribución, pero es predominantemente una especie sucesional tardía. Siendo una especie sensible a los incendios y lenta para recuperarse de las perturbaciones en varios sitios, Taxus llega a su máxima área basal y densidad de tallos adultos en bosques de crecimiento antiguo. La colonizatión de Taxus es en general lenta en hábitats potencialmente adecuados. La conservación de Taxus a nivel del paisaje requeriría grandes, reservas sin manejo y el mantenimiento de parches de bosque antiguo dentro de bosques bajo manejo. Largas rotaciones (siglos) entre los eventos de cosecha aumentará la viabilidad a largo témino de las especies. Las prácticas designadas para acelerar el desarrollo de la estructura de bosques maduros no beneficiará a Taxus y otras especies que requieran largos intervalos libres de perturbaciones para recuperarse.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa