Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 132: 104562, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381978

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Técnicas de Cocultura , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
2.
Cells ; 9(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516938

RESUMO

Genetic and genomic studies of brain disease increasingly demonstrate disease-associated interactions between the cell types of the brain. Increasingly complex and more physiologically relevant human-induced pluripotent stem cell (hiPSC)-based models better explore the molecular mechanisms underlying disease but also challenge our ability to resolve cell type-specific perturbations. Here, we report an extension of the RiboTag system, first developed to achieve cell type-restricted expression of epitope-tagged ribosomal protein (RPL22) in mouse tissue, to a variety of in vitro applications, including immortalized cell lines, primary mouse astrocytes, and hiPSC-derived neurons. RiboTag expression enables depletion of up to 87 percent of off-target RNA in mixed species co-cultures. Nonetheless, depletion efficiency varies across independent experimental replicates, particularly for hiPSC-derived motor neurons. The challenges and potential of implementing RiboTags in complex in vitro cultures are discussed.


Assuntos
Perfilação da Expressão Gênica , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Células 3T3 , Animais , Técnicas de Cocultura , Epitopos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Especificidade da Espécie , Transcriptoma/genética
3.
Nat Genet ; 51(12): 1679-1690, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784728

RESUMO

NRXN1 undergoes extensive alternative splicing, and non-recurrent heterozygous deletions in NRXN1 are strongly associated with neuropsychiatric disorders. We establish that human induced pluripotent stem cell (hiPSC)-derived neurons well represent the diversity of NRXN1α alternative splicing observed in the human brain, cataloguing 123 high-confidence in-frame human NRXN1α isoforms. Patient-derived NRXN1+/- hiPSC-neurons show a greater than twofold reduction in half of the wild-type NRXN1α isoforms and express dozens of novel isoforms from the mutant allele. Reduced neuronal activity in patient-derived NRXN1+/- hiPSC-neurons is ameliorated by overexpression of individual control isoforms in a genotype-dependent manner, whereas individual mutant isoforms decrease neuronal activity levels in control hiPSC-neurons. In a genotype-dependent manner, the phenotypic impact of patient-specific NRXN1+/- mutations can occur through a reduction in wild-type NRXN1α isoform levels as well as the presence of mutant NRXN1α isoforms.


Assuntos
Processamento Alternativo , Proteínas de Ligação ao Cálcio/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Moléculas de Adesão de Célula Nervosa/genética , Esquizofrenia/genética , Animais , Transtorno do Espectro Autista/genética , Transtorno Bipolar/genética , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Feminino , Expressão Gênica , Heterozigoto , Humanos , Masculino , Camundongos , Isoformas de Proteínas/genética , Deleção de Sequência
4.
Atten Percept Psychophys ; 79(4): 1001-1011, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28176215

RESUMO

Findings from an increasingly large number of studies have been used to argue that attentional capture can be dependent on the learned value of a stimulus, or value-driven. However, under certain circumstances attention can be biased to select stimuli that previously served as targets, independent of reward history. Value-driven attentional capture, as studied using the training phase-test phase design introduced by Anderson and colleagues, is widely presumed to reflect the combined influence of learned value and selection history. However, the degree to which attentional capture is at all dependent on value learning in this paradigm has recently been questioned. Support for value-dependence can be provided through one of two means: (1) greater attentional capture by prior targets following rewarded training than following unrewarded training, and (2) greater attentional capture by prior targets previously associated with high compared to low value. Using a variant of the original value-driven attentional capture paradigm, Sha and Jiang (Attention, Perception, and Psychophysics, 78, 403-414, 2016) failed to find evidence of either, and raised criticisms regarding the adequacy of evidence provided by prior studies using this particular paradigm. To address this disparity, here we provided a stringent test of the value-dependence hypothesis using the traditional value-driven attentional capture paradigm. With a sufficiently large sample size, value-dependence was observed based on both criteria, with no evidence of attentional capture without rewards during training. Our findings support the validity of the traditional value-driven attentional capture paradigm in measuring what its name purports to measure.


Assuntos
Atenção/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Recompensa , Percepção Visual/fisiologia , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Aprendizagem/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa