Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Malar J ; 22(1): 208, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420265

RESUMO

BACKGROUND: Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS: In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS: The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION: Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Zâmbia/epidemiologia , Análise Espacial , Genômica
2.
Malar J ; 19(1): 175, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381005

RESUMO

BACKGROUND: Reactive case detection (RCD) seeks to enhance malaria surveillance and control by identifying and treating parasitaemic individuals residing near index cases. In Zambia, this strategy starts with passive detection of symptomatic incident malaria cases at local health facilities or by community health workers, with subsequent home visits to screen-and-treat residents in the index case and neighbouring (secondary) households within a 140-m radius using rapid diagnostic tests (RDTs). However, a small circular radius may not be the most efficient strategy to identify parasitaemic individuals in low-endemic areas with hotspots of malaria transmission. To evaluate if RCD efficiency could be improved by increasing the probability of identifying parasitaemic residents, environmental risk factors and a larger screening radius (250 m) were assessed in a region of low malaria endemicity. METHODS: Between January 12, 2015 and July 26, 2017, 4170 individuals residing in 158 index and 531 secondary households were enrolled and completed a baseline questionnaire in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia. Plasmodium falciparum prevalence was measured using PfHRP2 RDTs and quantitative PCR (qPCR). A Quickbird™ high-resolution satellite image of the catchment area was used to create environmental risk factors in ArcGIS, and generalized estimating equations were used to evaluate associations between risk factors and secondary households with parasitaemic individuals. RESULTS: The parasite prevalence in secondary (non-index case) households was 0.7% by RDT and 1.8% by qPCR. Overall, 8.5% (n = 45) of secondary households had at least one resident with parasitaemia by qPCR or RDT. The risk of a secondary household having a parasitaemic resident was significantly increased in proximity to higher order streams and marginally with increasing distance from index households. The adjusted OR for proximity to third- and fifth-order streams were 2.97 (95% CI 1.04-8.42) and 2.30 (95% CI 1.04-5.09), respectively, and that for distance to index households for each 50 m was 1.24 (95% CI 0.98-1.58). CONCLUSION: Applying proximity to streams as a screening tool, 16% (n = 3) more malaria-positive secondary households were identified compared to using a 140-m circular screening radius. This analysis highlights the potential use of environmental risk factors as a screening strategy to increase RCD efficiency.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Erradicação de Doenças/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Malária Falciparum/prevenção & controle , Pessoa de Meia-Idade , Plasmodium falciparum/isolamento & purificação , Prevalência , Adulto Jovem , Zâmbia/epidemiologia
3.
J Infect Dis ; 219(8): 1254-1263, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30445612

RESUMO

BACKGROUND: Southern Province, Zambia has experienced a dramatic decline in Plasmodium falciparum malaria transmission in the past decade and is targeted for elimination. Zambia's National Malaria Elimination Program recommends reactive case detection (RCD) within 140 m of index households to enhance surveillance and eliminate remaining transmission foci. METHODS: To evaluate whether RCD captures local transmission, we genotyped 26 microsatellites from 106 samples collected from index (n = 27) and secondary (n = 79) cases detected through RCD in the Macha Hospital catchment area between January 2015 and April 2016. RESULTS: Participants from the same RCD event harbored more genetically related parasites than those from different RCD events, suggesting that RCD captures, at least in part, infections related through local transmission. Related parasites clustered in space and time, up to at least 250 m from index households. Spatial analysis identified a putative focal transmission hotspot. CONCLUSIONS: The current RCD strategy detects focal transmission events, although programmatic guidelines to screen within 140 m of index households may fail to capture all secondary cases. This study highlights the utility of parasite genetic data in assessing programmatic interventions, and similar approaches may be useful to malaria elimination programs seeking to tailor intervention strategies to the underlying transmission epidemiology.


Assuntos
Malária Falciparum/transmissão , Plasmodium falciparum/genética , Erradicação de Doenças/métodos , Técnicas de Genotipagem , Humanos , Malária Falciparum/parasitologia , Repetições de Microssatélites/genética , Vigilância da População , Análise Espaço-Temporal , Zâmbia/epidemiologia
4.
Malar J ; 17(1): 41, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351795

RESUMO

BACKGROUND: Insecticide-treated nets (ITNs) reduce malaria morbidity and mortality in endemic areas. Despite increasing availability, the use of ITNs remains limited in some settings. Poor malaria knowledge is a barrier to the widespread use of ITNs. The goal of this study was to assess the levels of malaria knowledge and evaluate factors associated with bed net use among individuals residing in three regions of southern Africa with different levels of malaria transmission and control. METHODS: A cross-sectional study was conducted on a sample of 7535 residents recruited from 2066 households in Mutasa District, Zimbabwe (seasonal malaria transmission), Choma District, Zambia (low transmission) and Nchelenge District, Zambia (high transmission), between March 2012 and March 2017. A standardized questionnaire was used to collect data on demographics, malaria-related knowledge and use of preventive measures. Multivariate logistic regression analyses were used to assess determinants of bed net use. RESULTS: Most of the 3836 adult participants correctly linked mosquito bites to malaria (85.0%), mentioned at least one malaria symptom (95.5%) and knew of the benefit of sleeping under an ITN. Bed net ownership and use were highest in Choma and Nchelenge Districts and lowest in Mutasa District. In multivariate analyses, knowledge of ITNs was associated with a 30-40% increased likelihood of bed net use after adjusting for potential confounders across all sites. Other factors significantly associated with bed net use were age, household size and socioeconomic status, although the direction, strength and size of association varied by study site. Importantly, participants aged 5-14 years had reduced odds of sleeping under a bed net compared to children younger than 5 years. CONCLUSION: Relevant knowledge of ITNs translated into the expected preventive behaviour of sleeping under a bed net, underscoring the need for continued health messaging on malaria prevention. The implementation and delivery of malaria control and elimination interventions needs to consider socioeconomic equity gaps, and target school-age children to ensure access to and improve utilization of ITNs.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/psicologia , Controle de Mosquitos , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Características da Família , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Controle de Mosquitos/estatística & dados numéricos , Propriedade/estatística & dados numéricos , Fatores Socioeconômicos , Adulto Jovem , Zâmbia , Zimbábue
5.
Malar J ; 15(1): 412, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527347

RESUMO

BACKGROUND: As malaria transmission declines in many regions of sub-Saharan Africa, interventions to identify the asymptomatic reservoir are being deployed with the goals of improving surveillance and interrupting transmission. Reactive case detection strategies, in which individuals with clinical malaria are followed up at their home and household residents and neighbours are screened and treated for malaria, are increasingly used as part of malaria elimination programmes. METHODS: A reactive screen-and-treat programme was implemented by the National Malaria Control Centre in Southern Province, Zambia, in which individuals residing within 140 m of an index case were screened with a malaria rapid diagnostic test (RDT) and treated if positive. The operational challenges during the early stages of implementing this reactive screen-and-treat programme in the catchment area of Macha Hospital in Southern Province, Zambia were assessed using rural health centre records, ground truth evaluation of community health worker performance, and data from serial cross-sectional surveys. The proportion of individuals infected with Plasmodium falciparum who were identified and treated was estimated by simulating reactive screen-and-treat and focal drug administration cascades. RESULTS: Within the 1st year of implementation, community health workers followed up 32 % of eligible index cases. When index cases were followed up, 66 % of residents were at home in the index households and 58 % in neighbouring households. Forty-one neighbouring households of 26 index households were screened, but only 13 (32 %) were within the 140-m screening radius. The parasite prevalence by RDT was 22 % in index households and 5 % in neighbouring households. In a simulation model with complete follow-up, 22 % of the total infected population would be detected with reactive screen-and-treat but 57 % with reactive focal drug administration. CONCLUSIONS: With limited resources, coverage and diagnostic tools, reactive screen-and-treat will likely not be sufficient to achieve malaria elimination in this setting. However, high coverage with reactive focal drug administration could be efficient at decreasing the reservoir of infection and should be considered as an alternative strategy.


Assuntos
Antimaláricos/uso terapêutico , Testes Diagnósticos de Rotina/estatística & dados numéricos , Transmissão de Doença Infecciosa/prevenção & controle , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Programas de Rastreamento/organização & administração , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Criança , Simulação por Computador , Estudos Transversais , Testes Diagnósticos de Rotina/métodos , Feminino , Seguimentos , Pesquisa sobre Serviços de Saúde , Humanos , Malária Falciparum/transmissão , Masculino , Programas de Rastreamento/métodos , Adulto Jovem , Zâmbia
6.
Malar J ; 14: 12, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25927429

RESUMO

BACKGROUND: Defining the anopheline mosquito vectors and their foraging behaviour in malaria endemic areas is crucial for disease control and surveillance. The standard protocol for molecular identification of host blood meals in mosquitoes is to morphologically identify fed mosquitoes and then perform polymerase chain reaction (PCR), precipitin tests, or ELISA assays. The purpose of this study was to determine the extent to which the feeding rate and human blood indices (HBIs) of malaria vectors were underestimated when molecular confirmation by PCR was performed on both visually fed and unfed mosquitoes. METHODS: In association with the Southern Africa International Centers of Excellence in Malaria Research (ICEMR), mosquito collections were performed at three sites: Choma district in southern Zambia, Nchelenge district in northern Zambia, and Mutasa district in eastern Zimbabwe. All anophelines were classified visually as fed or unfed, and tested for blood meal species using PCR methods. The HBIs of visually fed mosquitoes were compared to the HBIs of overall PCR confirmed fed mosquitoes by Pearson's Chi-Square Test of Independence. RESULTS: The mosquito collections consisted of Anopheles arabiensis from Choma, Anopheles funestus s.s., Anopheles gambiae s.s. and Anopheles leesoni from Nchelenge, and An. funestus s.s. and An. leesoni from Mutasa. The malaria vectors at all three sites had large human blood indices (HBI) suggesting high anthropophily. When only visually fed mosquitoes tested by PCR for blood meal species were compared to testing those classified as both visually fed and unfed mosquitoes, it was found that the proportion blooded was underestimated by up to 18.7%. For most Anopheles species at each site, there was a statistically significant relationship (P < 0.05) between the HBIs of visually fed mosquitoes and that of the overall PCR confirmed fed mosquitoes. CONCLUSION: The impact on HBI of analysing both visually fed and unfed mosquitoes varied from site to site. This discrepancy may be due to partial blood feeding behaviour by mosquitoes, digestion of blood meals, sample condition, and/or expertise of entomology field staff. It is important to perform molecular testing on all mosquitoes to accurately characterize vector feeding behaviour and develop interventions in malaria endemic areas.


Assuntos
Anopheles/fisiologia , DNA/análise , Entomologia/métodos , Comportamento Alimentar , Insetos Vetores/fisiologia , Animais , DNA/genética , Feminino , Humanos , Reação em Cadeia da Polimerase , Zâmbia , Zimbábue
7.
Malar J ; 14: 25, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25888818

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) detecting histidine-rich protein 2 (PfHRP2) antigen are used to identify individuals with Plasmodium falciparum infection even in low transmission settings seeking to achieve elimination. However, these RDTs lack sensitivity to detect low-density infections, produce false negatives for P. falciparum strains lacking pfhrp2 gene and do not detect species other than P. falciparum. METHODS: Results of a PfHRP2-based RDT and Plasmodium nested PCR were compared in a region of declining malaria transmission in southern Zambia using samples from community-based, cross-sectional surveys from 2008 to 2012. Participants were tested with a PfHRP2-based RDT and a finger prick blood sample was spotted onto filter paper for PCR analysis and used to prepare blood smears for microscopy. Species-specific, real-time, quantitative PCR (q-PCR) was performed on samples that tested positive either by microscopy, RDT or nested PCR. RESULTS: Of 3,292 total participants enrolled, 12 (0.4%) tested positive by microscopy and 42 (1.3%) by RDT. Of 3,213 (98%) samples tested by nested PCR, 57 (1.8%) were positive, resulting in 87 participants positive by at least one of the three tests. Of these, 61 tested positive for P. falciparum by q-PCR with copy numbers ≤ 2 x 10(3) copies/µL, 5 were positive for both P. falciparum and Plasmodium malariae and 2 were positive for P. malariae alone. RDT detected 32 (53%) of P. falciparum positives, failing to detect three of the dual infections with P. malariae. Among 2,975 participants enrolled during a low transmission period between 2009 and 2012, sensitivity of the PfHRP2-based RDT compared to nested PCR was only 17%, with specificity of >99%. The pfhrp gene was detected in 80% of P. falciparum positives; however, comparison of copy number between RDT negative and RDT positive samples suggested that RDT negatives resulted from low parasitaemia and not pfhrp2 gene deletion. CONCLUSIONS: Low-density P. falciparum infections not identified by currently used PfHRP2-based RDTs and the inability to detect non-falciparum malaria will hinder progress to further reduce malaria in low transmission settings of Zambia. More sensitive and specific diagnostic tests will likely be necessary to identify parasite reservoirs and achieve malaria elimination.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Kit de Reagentes para Diagnóstico/parasitologia , Adolescente , Adulto , Antígenos de Protozoários/sangue , Criança , Estudos Transversais , Humanos , Limite de Detecção , Plasmodium falciparum/genética , Prevalência , Proteínas de Protozoários/sangue , Adulto Jovem , Zâmbia
8.
medRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38883763

RESUMO

The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.

9.
Sci Rep ; 14(1): 26789, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39500918

RESUMO

The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013 and 2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample from 2016 carrying K13 622I, no other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations were observed. However, in the more recent years (2016-2017) five novel K13-propeller-domain mutations, C532S, A578S, Q613E, D680N and G718S were identified at low prevalence. Moreover, 13% (CI, 9.6-17.2) of isolates had the AP2MU 160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015 and 2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Mutação , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Zâmbia/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Artemisininas/uso terapêutico , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Lumefantrina/uso terapêutico , Prevalência , Genômica/métodos , Genótipo
10.
Am J Trop Med Hyg ; 109(1): 134-137, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127270

RESUMO

Obtaining accurate malaria surveillance data is challenging in low-transmission settings because large sample sizes are required to estimate incidence and prevalence precisely. Serology is an additional tool to document progress toward malaria elimination. An enzyme immunoassay to Plasmodium falciparum lysate was used to estimate age-specific seroprevalence among residents of southern Zambia, where malaria transmission has declined to pre-elimination levels during the past two decades. Plasma was eluted from 3,362 dried blood spots collected during five cross-sectional surveys conducted between 2009 and 2012, and again in 2018. Annual seroconversion rates (SCRs), an estimate of the force of infection, were calculated using a reversible catalytic model. The SCR decreased by two thirds from a level of approximately 0.15/year in 2009 and 2010 to approximately 0.05/year in 2011 and 2012, and then decreased 5-fold to 0.01/year by 2018, demonstrating the utility of serology in documenting progress toward elimination.


Assuntos
Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Zâmbia/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Soroconversão , Malária/epidemiologia , Fatores Etários
11.
Malar J ; 11: 438, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23276228

RESUMO

BACKGROUND: Critical to sustaining progress in malaria control is comprehensive surveillance to identify outbreaks and prevent resurgence. Serologic responses to Plasmodium falciparum antigens can serve as a marker of recent transmission and serosurveillance may be feasible on a large scale. METHODS: Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys in two study areas in Southern Province, Zambia, one in 2007 and the other in 2008 and 2009. Blood was collected and stored as dried spots from participating household members. A malaria rapid diagnostic test (RDT) was used to diagnose malaria. An enzyme immunoassay (EIA) was used to detect IgG antibodies to asexual stage P. falciparum whole parasite lysate using serum eluted from dried blood spots. The expected mean annual increase in optical density (OD) value for individuals with a documented prior history of recent malaria was determined using mixed models. SatScan was used to determine the spatial clustering of households with individuals with serological evidence of recent malaria, and these households were plotted on a malaria risk map. RESULTS: RDT positivity differed markedly between the study areas and years: 28% of participants for whom serologic data were available were RDT positive in the 2007 study area, compared to 8.1% and 1.4% in the 2008 and 2009 study area, respectively. Baseline antibody levels were measured in 234 participants between April and July 2007, 435 participants between February and December 2008, and 855 participants between January and December 2009. As expected, the proportion of seropositive individuals increased with age in each year. In a subset of participants followed longitudinally, RDT positivity at the prior visit was positively correlated with an increase in EIA OD values after adjusting for age in 2007 (0.261, p = 0.003) and in 2008 (0.116, p = 0.03). RDT positivity at the concurrent visit also was associated with an increase in EIA OD value in 2007 (mean increase 0.177, p = 0.002) but not in 2008 (-0.063, p =0.50). Households comprised of individuals with serologic evidence of recent malaria overlapped areas of high malaria risk for serologic data from 2009, when parasite prevalence was lowest. CONCLUSIONS: Serological surveys to whole asexual P. falciparum antigens using blood collected as dried blood spots can be used to detect temporal and spatial patterns of malaria transmission in a region of declining malaria burden, and have the potential to identify focal areas of recent transmission.


Assuntos
Antígenos de Protozoários , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/sangue , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Estudos Longitudinais , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Estudos Prospectivos , Fatores de Risco , Testes Sorológicos , Fatores de Tempo , Zâmbia/epidemiologia
12.
Am J Trop Med Hyg ; 106(6): 1791-1799, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35895429

RESUMO

Malaria incidence has declined in southern Zambia over recent decades, leading to efforts to achieve and sustain malaria elimination. Understanding the remaining disease burden is key to providing optimal health care. A longitudinal study conducted in a rural area of Choma District, Southern Province, Zambia, assessed the prevalence of and factors associated with symptoms of non-malarial illnesses and treatment-seeking behavior. We analyzed data collected monthly between October 2018 through September 2020 from 1,174 individuals from 189 households. No incident malaria cases were detected by rapid diagnostic tests among febrile participants. Mixed-effects logistic regression identified factors associated with cough, fever, diarrhea, and treatment-seeking. Incidence rates of cough (192 of 1,000 person-months), fever (87 of 1,000 person-months), and fever with cough (37 of 1,000 person-months) were highest among adults older than 65 years. Diarrhea incidence (37 of 1,000 person-months) was highest among children younger than 5 years. For every additional symptomatic household member, one's odds of experiencing symptoms increased: cough by 47% (95% CI, 40-55), fever by 31% (95% CI, 23-40), diarrhea by 31% (95% CI, 17-46), and fever with cough by 112% (95% CI, 90-137), consistent with household clustering of illnesses. However, between 35% and 75% of participants did not seek treatment for their symptoms. Treatment-seeking was most common for children 5 to 9 years old experiencing diarrhea (adjusted odds ratio, 3.61; 95% CI, 1.42-9.18). As malaria prevalence reduces, respiratory and diarrheal infections persist, particularly among young children but, notably, also among adults older than 65 years. Increasing awareness of the disease burden and treatment-seeking behavior are important for guiding resource re-allocation as malaria prevalence declines in this region.


Assuntos
Tosse , Malária , Adulto , Criança , Pré-Escolar , Tosse/epidemiologia , Diarreia/epidemiologia , Febre/epidemiologia , Humanos , Estudos Longitudinais , Malária/epidemiologia , Malária/terapia , Zâmbia/epidemiologia
13.
Am J Trop Med Hyg ; 107(5): 1145-1153, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36252797

RESUMO

Human movement drives spatial transmission patterns of infectious diseases. Population-level mobility patterns are often quantified using aggregated data sets, such as census migration surveys or mobile phone data. These data are often unable to quantify individual-level travel patterns and lack the information needed to discern how mobility varies by demographic groups. Individual-level datasets can capture additional, more precise, aspects of mobility that may impact disease risk or transmission patterns and determine how mobility differs across cohorts; however, these data are rare, particularly in locations such as sub-Saharan Africa. Using detailed GPS logger data collected from three sites in southern Africa, we explore metrics of mobility such as percent time spent outside home, number of locations visited, distance of locations, and time spent at locations to determine whether they vary by demographic, geographic, or temporal factors. We further create a composite mobility score to identify how well aggregated summary measures would capture the full extent of mobility patterns. Although sites had significant differences in all mobility metrics, no site had the highest mobility for every metric, a distinction that was not captured by the composite mobility score. Further, the effects of sex, age, and season on mobility were all dependent on site. No factor significantly influenced the number of trips to locations, a common way to aggregate datasets. When collecting and analyzing human mobility data, it is difficult to account for all the nuances; however, these analyses can help determine which metrics are most helpful and what underlying differences may be present.


Assuntos
Telefone Celular , Doenças Transmissíveis , Humanos , Viagem , Inquéritos e Questionários
14.
Am J Trop Med Hyg ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35344932

RESUMO

Malaria transmission has declined substantially in Southern Province, Zambia, which is considered a low-transmission setting. The Zambian government introduced a reactive test-and-treat strategy to identify active zones of transmission and treat parasitemic residents. This study was conducted in the Choma District, Southern Province, Zambia, concurrently with an evaluation of this strategy to identify vectors responsible for sustaining transmission, and to identify entomological, spatial, and ecological risk factors associated with increased densities of mosquitoes. Anophelines were collected with CDC light traps indoors and near animal pens in index cases and neighboring households. Outdoor collections captured significantly more anophelines than indoor traps, and 10 different anopheline species were identified. Four species (Anopheles arabiensis, An. rufipes, An. squamosus, and An. coustani) were positive for Plasmodium falciparum circumsporozoite protein by ELISA, and 61% of these 26 anophelines were captured outdoors. Bloodmeal assays confirm plasticity in An. arabiensis foraging, feeding both on humans and animals, whereas An. rufipes, An. squamosus, and An. coustani were largely zoophilic and exophilic. Linear regression of count data for indoor traps revealed that households with at least one parasitemic resident by polymerase chain reaction testing was associated with higher female anopheline counts. This suggests that targeting households with parasitemic individuals for vector interventions may reduce indoor anopheline populations. However, many vectors species responsible for transmission may not be affected by indoor interventions because they are primarily exophilic and forage opportunistically. These data underscore the necessity for further evaluation of vector surveillance and control tools that are effective outdoors, in conjunction with current indoor-based interventions.

15.
Am J Trop Med Hyg ; 107(4_Suppl): 55-67, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228903

RESUMO

For a decade, the Southern and Central Africa International Center of Excellence for Malaria Research has operated with local partners across study sites in Zambia and Zimbabwe that range from hypo- to holoendemic and vary ecologically and entomologically. The burden of malaria and the impact of control measures were assessed in longitudinal cohorts, cross-sectional surveys, passive and reactive case detection, and other observational designs that incorporated multidisciplinary scientific approaches: classical epidemiology, geospatial science, serosurveillance, parasite and mosquito genetics, and vector bionomics. Findings to date have helped elaborate the patterns and possible causes of sustained low-to-moderate transmission in southern Zambia and eastern Zimbabwe and recalcitrant high transmission and fatality in northern Zambia. Cryptic and novel mosquito vectors, asymptomatic parasite reservoirs in older children, residual parasitemia and gametocytemia after treatment, indoor residual spraying timed dyssynchronously to vector abundance, and stockouts of essential malaria commodities, all in the context of intractable rural poverty, appear to explain the persistent malaria burden despite current interventions. Ongoing studies of high-resolution transmission chains, parasite population structures, long-term malaria periodicity, and molecular entomology are further helping to lay new avenues for malaria control in southern and central Africa and similar settings.


Assuntos
Inseticidas , Malária , Parasitos , África Central , Animais , Criança , Estudos Transversais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Zâmbia/epidemiologia , Zimbábue/epidemiologia
16.
Am J Trop Med Hyg ; 107(4_Suppl): 68-74, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228913

RESUMO

The International Centers of Excellence for Malaria Research (ICEMR) were established by the National Institute of Allergy and Infectious Diseases more than a decade ago to provide multidisciplinary research support to malaria control programs worldwide, operating in endemic areas and contributing technology, expertise, and ultimately policy guidance for malaria control and elimination. The Southern and Central Africa ICEMR has conducted research across three main sites in Zambia and Zimbabwe that differ in ecology, entomology, transmission intensity, and control strategies. Scientific findings led to new policies and action by the national malaria control programs and their partners in the selection of methods, materials, timing, and locations of case management and vector control. Malaria risk maps and predictive models of case detection furnished by the ICEMR informed malaria elimination programming in southern Zambia, and time series analyses of entomological and parasitological data motivated several major changes to indoor residual spray campaigns in northern Zambia. Along the Zimbabwe-Mozambique border, temporal and geospatial data are currently informing investigations into a recent resurgence of malaria. Other ICEMR findings pertaining to parasite and mosquito genetics, human behavior, and clinical epidemiology have similarly yielded immediate and long-term policy implications at each of the sites, often with generalizable conclusions. The ICEMR programs thereby provide rigorous scientific investigations and analyses to national control and elimination programs, without which the impediments to malaria control and their potential solutions would remain understudied.


Assuntos
Malária , Mosquitos Vetores , África Central , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Políticas , Zâmbia/epidemiologia , Zimbábue/epidemiologia
17.
Malar J ; 10: 162, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663660

RESUMO

BACKGROUND: In formerly endemic areas where malaria transmission has declined, levels of population immunity to Plasmodium falciparum provide information on continued malaria transmission and potentially susceptible populations. Traditional techniques for measuring serological responses to P. falciparum antigens use plasma or dried blood spots (DBS). These invasive procedures pose a biohazard and may be unacceptable to communities if performed frequently. The use of oral fluid (OF) samples to detect antibodies to P. falciparum antigens may be a more acceptable strategy to monitor changes in population immunity. METHODS: An enzyme immunoassay was optimized to detect antibodies to whole, asexual stage P. falciparum antigens. Optical density (OD) values from paired DBS and OF samples collected as part of a community-based survey of malaria parasitaemia were compared. RESULTS: Oral fluid and dried blood spot samples were collected from 53 participants in Southern Province, Zambia. Their ages ranged from 1 to 80 years and 45% were female. A statistically significant correlation (r=0.79; P<0.01) was observed between OD values from OF and DBS samples. The OF assay identified all DBS-confirmed positive and negative samples, resulting in 100% sensitivity and specificity. CONCLUSIONS: Oral fluid is a valid alternative specimen for monitoring changes in antibodies to P. falciparum antigens. As OF collection is often more acceptable to communities, poses less of a biohazard than blood samples and can be performed by community volunteers, serological surveys using OF samples provide a strategy for monitoring population immunity in regions of declining malaria transmission.


Assuntos
Anticorpos Antiprotozoários/análise , Técnicas de Laboratório Clínico/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/imunologia , Saliva/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Protozoários , Criança , Pré-Escolar , Feminino , Humanos , Técnicas Imunoenzimáticas/métodos , Lactente , Malária Falciparum/imunologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem , Zâmbia
18.
Malar J ; 10: 163, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663661

RESUMO

BACKGROUND: The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria. METHODS: Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks. RESULTS: A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households. CONCLUSIONS: Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.


Assuntos
Malária/epidemiologia , Parasitemia/epidemiologia , Tecnologia de Sensoriamento Remoto/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Coleta de Dados , Geografia , Humanos , Estudos Longitudinais , Malária/transmissão , Fatores de Risco , Adulto Jovem , Zâmbia/epidemiologia
19.
Malar J ; 10: 324, 2011 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22039751

RESUMO

BACKGROUND: Malaria elimination will require that both symptomatic- and asymptomatic-infected persons be identified and treated. However, well-characterized, individual-level risk factors for malaria may not be valid in regions with declining malaria transmission. Changes in individual-level correlates of malaria infection were evaluated over three years in a region of declining malaria transmission in southern Zambia. METHODS: Malaria surveys were conducted in two study areas within the catchment area of Macha Hospital, Zambia in 2007 and 2008/2009. A random sample of households was identified from a digitized satellite image of the study areas. Cross-sectional surveys were conducted approximately five times throughout the year in each of the two study areas. During study visits, adults and caretakers of children were administered questionnaires and a blood sample was obtained for a rapid diagnostic test (RDT) for malaria. RESULTS: In the 2007 study area, 330 individuals were surveyed. 40.9% of participants lived in a household with at least one insecticide-treated bed net (ITN); however, only 45.2% reported sleeping under the ITN. 23.9% of participants were RDT positive. Correlates of RDT positivity included younger age, the presence of symptoms, testing during the rainy season, using an open water source, and not sleeping under an ITN. In the 2008 study area, 435 individuals were surveyed. 77.0% of participants lived in a household with at least one ITN; however, only 56.4% reported sleeping under the ITN. 8.1% of participants were RDT positive. RDT positivity was negatively correlated with the presence of symptoms within the last two weeks but positively correlated with documented fever. In 2009, 716 individuals were surveyed in the same area as 2008. 63.7% of participants lived in a household with at least one ITN; however, only 57.7% reported sleeping under the ITN. 1.5% of participants were RDT positive. Only self-reported fever was significantly correlated with RDT positivity. CONCLUSIONS: With declining malaria prevalence, few individual-level characteristics were correlated with RDT positivity. This lack of correlation with individual characteristics hampers identification of individuals infected with malaria. Strategies based on ecological or environmental risk factors may be needed to target control efforts and achieve further reductions and elimination.


Assuntos
Malária/diagnóstico , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sangue/parasitologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Parasitemia/diagnóstico , Parasitemia/epidemiologia , Fatores de Risco , Inquéritos e Questionários , Adulto Jovem , Zâmbia/epidemiologia
20.
Am J Trop Med Hyg ; 104(3): 1000-1002, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33399042

RESUMO

The WHO recommends single low-dose (SLD) primaquine as a gametocytocide to reduce Plasmodium falciparum transmission in areas of low transmission. Despite this recommendation, uptake of SLD primaquine has been low because of concerns of glucose-6-phosphate dehydrogenase (G6PD) deficiency. Individuals with G6PD deficiency can experience hemolysis when exposed to primaquine. In Southern Province, Zambia, malaria transmission has declined significantly over the past decade. Single low-dose primaquine may be an effective tool, but there is limited information on G6PD deficiency. We screened 137 residents in Macha, Southern Province, Zambia, and the prevalence of G6PD (A-) was 15%. We also revisited data collected from 2008 to 2013 in the same area and found the highest gametocyte burden among those aged 5-15 years. The findings from this study suggest that SLD primaquine targeted to school-aged children may be an effective tool to help achieve malaria elimination in southern Zambia.


Assuntos
Antimaláricos/uso terapêutico , Gametogênese/efeitos dos fármacos , Deficiência de Glucosefosfato Desidrogenase/induzido quimicamente , Glucosefosfato Desidrogenase/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária/transmissão , Primaquina/uso terapêutico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células Germinativas/microbiologia , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Humanos , Lactente , Recém-Nascido , Malária/epidemiologia , Masculino , Prevalência , Adulto Jovem , Zâmbia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa