Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Immunol ; 19(1): 85-97, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167569

RESUMO

The hierarchy of human hemopoietic progenitor cells that produce lymphoid and granulocytic-monocytic (myeloid) lineages is unclear. Multiple progenitor populations produce lymphoid and myeloid cells, but they remain incompletely characterized. Here we demonstrated that lympho-myeloid progenitor populations in cord blood - lymphoid-primed multi-potential progenitors (LMPPs), granulocyte-macrophage progenitors (GMPs) and multi-lymphoid progenitors (MLPs) - were functionally and transcriptionally distinct and heterogeneous at the clonal level, with progenitors of many different functional potentials present. Although most progenitors had the potential to develop into only one mature cell type ('uni-lineage potential'), bi- and rarer multi-lineage progenitors were present among LMPPs, GMPs and MLPs. Those findings, coupled with single-cell expression analyses, suggest that a continuum of progenitors execute lymphoid and myeloid differentiation, rather than only uni-lineage progenitors' being present downstream of stem cells.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/metabolismo , Análise de Célula Única/métodos , Animais , Linhagem da Célula/genética , Separação Celular/métodos , Células Cultivadas , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos , Transplante Heterólogo
2.
Allergy ; 76(6): 1731-1742, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33078414

RESUMO

BACKGROUND: Basophils and mast cells contribute to the development of allergic reactions. Whereas these mature effector cells are extensively studied, the differentiation trajectories from hematopoietic progenitors to basophils and mast cells are largely uncharted at the single-cell level. METHODS: We performed multicolor flow cytometry, high-coverage single-cell RNA sequencing analyses, and cell fate assays to chart basophil and mast cell differentiation at single-cell resolution in mouse. RESULTS: Analysis of flow cytometry data reconstructed a detailed map of basophil and mast cell differentiation, including a bifurcation of progenitors into two specific trajectories. Molecular profiling and pseudotime ordering of the single cells revealed gene expression changes during differentiation. Cell fate assays showed that multicolor flow cytometry and transcriptional profiling successfully predict the bipotent phenotype of a previously uncharacterized population of peritoneal basophil-mast cell progenitors. CONCLUSIONS: A combination of molecular and functional profiling of bone marrow and peritoneal cells provided a detailed road map of basophil and mast cell development. An interactive web resource was created to enable the wider research community to explore the expression dynamics for any gene of interest.


Assuntos
Basófilos , Mastócitos , Animais , Células da Medula Óssea , Diferenciação Celular , Camundongos , Células-Tronco
3.
Blood ; 131(21): e1-e11, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29588278

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W41/W41) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced Myc expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-kit/deficiência , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Análise de Célula Única , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 114(23): 5822-5829, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584094

RESUMO

Adult blood contains a mixture of mature cell types, each with specialized functions. Single hematopoietic stem cells (HSCs) have been functionally shown to generate all mature cell types for the lifetime of the organism. Differentiation of HSCs toward alternative lineages must be balanced at the population level by the fate decisions made by individual cells. Transcription factors play a key role in regulating these decisions and operate within organized regulatory programs that can be modeled as transcriptional regulatory networks. As dysregulation of single HSC fate decisions is linked to fatal malignancies such as leukemia, it is important to understand how these decisions are controlled on a cell-by-cell basis. Here we developed and applied a network inference method, exploiting the ability to infer dynamic information from single-cell snapshot expression data based on expression profiles of 48 genes in 2,167 blood stem and progenitor cells. This approach allowed us to infer transcriptional regulatory network models that recapitulated differentiation of HSCs into progenitor cell types, focusing on trajectories toward megakaryocyte-erythrocyte progenitors and lymphoid-primed multipotent progenitors. By comparing these two models, we identified and subsequently experimentally validated a difference in the regulation of nuclear factor, erythroid 2 (Nfe2) and core-binding factor, runt domain, alpha subunit 2, translocated to, 3 homolog (Cbfa2t3h) by the transcription factor Gata2. Our approach confirms known aspects of hematopoiesis, provides hypotheses about regulation of HSC differentiation, and is widely applicable to other hierarchical biological systems to uncover regulatory relationships.


Assuntos
Redes Reguladoras de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Algoritmos , Animais , Diferenciação Celular , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
5.
Blood ; 128(8): e20-31, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27365425

RESUMO

Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Análise de Célula Única/métodos , Animais , Biomarcadores/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
7.
Bioinformatics ; 30(21): 3120-2, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25061071

RESUMO

UNLABELLED: The fluorescence in situ hybridization (FISH) method has been providing valuable information on physical distances between loci (via image analysis) for several decades. Recently, high-throughput data on nearby chemical contacts between and within chromosomes became available with the Hi-C method. Here, we present FisHiCal, an R package for an iterative FISH-based Hi-C calibration that exploits in full the information coming from these methods. We describe here our calibration model and present 3D inference methods that we have developed for increasing its usability, namely, 3D reconstruction through local stress minimization and detection of spatial inconsistencies. We next confirm our calibration across three human cell lines and explain how the output of our methods could inform our model, defining an iterative calibration pipeline, with applications for quality assessment and meta-analysis. AVAILABILITY AND IMPLEMENTATION: FisHiCal v1.1 is available from http://cran.r-project.org/.


Assuntos
Cromatina/química , Hibridização in Situ Fluorescente/métodos , Software , Calibragem , Linhagem Celular , Humanos , Processamento de Imagem Assistida por Computador , Células K562
8.
Nat Commun ; 13(1): 7324, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443294

RESUMO

Despite early clinical successes, the mechanisms of action of low-dose interleukin-2 (LD-IL-2) immunotherapy remain only partly understood. Here we examine the effects of interval administration of low-dose recombinant IL-2 (iLD-IL-2) in type 1 diabetes using high-resolution single-cell multiomics and flow cytometry on longitudinally-collected peripheral blood samples. Our results confirm that iLD-IL-2 selectively expands thymic-derived FOXP3+HELIOS+ regulatory T cells and CD56bright NK cells, and show that the treatment reduces the frequency of IL-21-producing CD4+ T cells and of two innate-like mucosal-associated invariant T and Vγ9Vδ2 CD8+ T cell subsets. The cellular changes induced by iLD-IL-2 associate with an anti-inflammatory gene expression signature, which remains detectable in all T and NK cell subsets analysed one month after treatment. These findings warrant investigations into the potential longer-term clinical benefits of iLD-IL-2 in immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-2 , Linfócitos T , Humanos , Anti-Inflamatórios , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Expressão Gênica , Interleucina-2/genética , Linfócitos T/imunologia
9.
Wellcome Open Res ; 6: 149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35509371

RESUMO

Background: The characterisation of the peripheral immune system in the autoimmune disease systemic lupus erythematosus (SLE) at the single-cell level has been limited by the reduced sensitivity of current whole-transcriptomic technologies. Here we employ a targeted single-cell multi-omics approach, combining protein and mRNA quantification, to generate a high-resolution map of the T lymphocyte and natural killer (NK) cell populations in blood from SLE patients. Methods: We designed a custom panel to quantify the transcription of 534 genes in parallel with the expression of 51 surface protein targets using the BD Rhapsody AbSeq single-cell system. We applied this technology to profile 20,656 T and NK cells isolated from peripheral blood from an SLE patient with a type I interferon (IFN)-induced gene expression signature (IFN hi), and an age- and sex- matched IFN low SLE patient and healthy donor. Results: We confirmed the presence of a rare cytotoxic CD4 + T cell (CTL) subset, which was exclusively present in the IFN hi patient. Furthermore, we identified additional alterations consistent with increased immune activation in this patient, most notably a shift towards terminally differentiated CD57 + CD8 + T cell and CD16 + NK dim phenotypes, and the presence of a subset of recently-activated naïve CD4 + T cells. Conclusions: Our results identify IFN-driven changes in the composition and phenotype of T and NK cells that are consistent with a systemic immune activation within the IFN hi patient, and underscore the added resolving power of this multi-omics approach to identify rare immune subsets. Consequently, we were able to find evidence for novel cellular peripheral biomarkers of SLE disease activity, including a subpopulation of CD57 + CD4 + CTLs.

10.
Stem Cell Reports ; 16(6): 1614-1628, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961793

RESUMO

Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.


Assuntos
Arilsulfotransferase/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Hematopoéticas/fisiologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma , Animais , Transplante de Medula Óssea/métodos , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Hibernação , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Análise de Célula Única , Nicho de Células-Tronco
11.
Science ; 374(6575): eaba5531, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941412

RESUMO

In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Floema/citologia , Floema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Meristema/citologia , Floema/genética , Floema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/genética , Transcriptoma
12.
Nat Cell Biol ; 22(6): 630-639, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367048

RESUMO

How transplanted haematopoietic stem cells (HSCs) behave soon after they reside in a preconditioned host has not been studied due to technical limitations. Here, using single-cell RNA sequencing, we first obtained the transcriptome-based classifications of 28 haematopoietic cell types. We then applied them in conjunction with functional assays to track the dynamic changes of immunophenotypically purified HSCs in irradiated recipients within the first week after transplantation. Based on our transcriptional classifications, most homed HSCs in bone marrow and spleen became multipotent progenitors and, occasionally, some HSCs gave rise to megakaryocytic-erythroid or myeloid precursors. Parallel in vitro and in vivo functional experiments supported the paradigm of robust differentiation without substantial HSC expansion during the first week. Therefore, this study uncovers the previously inaccessible kinetics and fate choices of transplanted HSCs in myeloablated recipients at early stage, with implications for clinical applications of HSCs and other stem cells.


Assuntos
Diferenciação Celular , Células Precursoras Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Células Mieloides/citologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Ciclo Celular , Linhagem da Célula , Células Precursoras Eritroides/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo
13.
Exp Hematol ; 78: 11-20, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513832

RESUMO

Hematopoietic stem cells (HSCs) are an essential source and reservoir for normal hematopoiesis, and their function is compromised in many blood disorders. HSC research has benefitted from the recent development of single-cell molecular profiling technologies, where single-cell RNA sequencing (scRNA-seq) in particular has rapidly become an established method to profile HSCs and related hematopoietic populations. The classic definition of HSCs relies on transplantation assays, which have been used to validate HSC function for cell populations defined by flow cytometry. Flow cytometry information for single cells, however, is not available for many new high-throughput scRNA-seq methods, thus highlighting an urgent need for the establishment of alternative ways to pinpoint the likely HSCs within large scRNA-seq data sets. To address this, we tested a range of machine learning approaches and developed a tool, hscScore, to score single-cell transcriptomes from murine bone marrow based on their similarity to gene expression profiles of validated HSCs. We evaluated hscScore across scRNA-seq data from different laboratories, which allowed us to establish a robust method that functions across different technologies. To facilitate broad adoption of hscScore by the wider hematopoiesis community, we have made the trained model and example code freely available online. In summary, our method hscScore provides fast identification of mouse bone marrow HSCs from scRNA-seq measurements and represents a broadly useful tool for analysis of single-cell gene expression data.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Aprendizado de Máquina , Análise de Sequência de RNA , Transcriptoma/fisiologia , Animais , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout
14.
Methods Mol Biol ; 1975: 239-249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31062313

RESUMO

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic hierarchy, possessing the ability to self-renew and differentiate toward all mature blood lineages. Along with more specialized progenitor cells, HSCs have an essential role in maintaining a healthy blood system. Incorrect regulation of cell fate decisions in stem/progenitor cells can lead to an imbalance of mature blood cell populations-a situation seen in diseases such as leukemia. Transcription factors, acting as part of complex regulatory networks, are known to play an important role in regulating hematopoietic cell fate decisions. Yet, discovering the interactions present in these networks remains a big challenge. Here, we discuss a computational method that uses single-cell gene expression data to reconstruct Boolean gene regulatory network models and show how this technique can be applied to enhance our understanding of transcriptional regulation in hematopoiesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Biologia Computacional/métodos , Redes Reguladoras de Genes , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Transcriptoma
15.
Genome Biol ; 20(1): 59, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890159

RESUMO

Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions ( https://github.com/theislab/paga ). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Planárias/citologia , Planárias/genética , Padrões de Referência , Software , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
16.
Cell Rep ; 29(12): 4144-4158.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851939

RESUMO

Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between "dormant" and "active" HSCs remains unresolved. Here we generate a G0 marker (G0M) mouse line that visualizes quiescent cells and identify a small population of active HSCs (G0Mlow), which are distinct from dormant HSCs (G0Mhigh), within the conventional quiescent HSC fraction. Single-cell RNA-seq analyses show that the gene expression profiles of these populations are nearly identical but differ in their Cdk4/6 activity. Furthermore, high-throughput small-molecule screening reveals that high concentrations of cytoplasmic calcium ([Ca2+]c) are linked to dormancy of HSCs. These findings indicate that G0M separates dormant and active adult HSCs, which are regulated by Cdk4/6 and [Ca2+]c. This G0M mouse line represents a useful resource for investigating physiologically important stem cell subpopulations.


Assuntos
Biomarcadores/metabolismo , Cálcio/metabolismo , Autorrenovação Celular , Citoplasma/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fase de Repouso do Ciclo Celular , Animais , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
17.
Nat Cell Biol ; 19(4): 261-263, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361939

RESUMO

Determining the differentiation potential of stem and progenitor cells is essential for understanding their function, yet our ability to do so is limited by the restrictions of experimental assays. Based on single-cell functional and molecular profiling experiments, a new computational approach shows how lineage commitment may occur in human haematopoiesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Células-Tronco
18.
J Exp Med ; 214(10): 3085-3104, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28899870

RESUMO

Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro-B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell-programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation.


Assuntos
Linfócitos B/metabolismo , Carcinogênese/metabolismo , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/fisiologia , Linfócitos/fisiologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Linfoma de Células T/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/fisiologia , Timócitos/metabolismo , Timócitos/fisiologia
19.
FEBS Lett ; 590(22): 4052-4067, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27259698

RESUMO

Haematopoietic stem and progenitor cells (HSPCs) sit at the top of the haematopoietic hierarchy, and their fate choices need to be carefully controlled to ensure balanced production of all mature blood cell types. As cell fate decisions are made at the level of the individual cells, recent technological advances in measuring gene and protein expression in increasingly large numbers of single cells have been rapidly adopted to study both normal and pathological HSPC function. In this review we emphasise the importance of combining the correct computational models with single-cell experimental techniques, and illustrate how such integrated approaches have been used to resolve heterogeneities in populations, reconstruct lineage differentiation, identify regulatory relationships and link molecular profiling to cellular function.


Assuntos
Diferenciação Celular/genética , Células-Tronco Hematopoéticas/citologia , Análise de Célula Única , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos
20.
Cell Rep ; 14(4): 966-977, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26804912

RESUMO

The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Simulação por Computador , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de RNA , Análise de Célula Única , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa