Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Trends Biochem Sci ; 48(10): 849-859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596196

RESUMO

CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.


Assuntos
Cinetocoros , Nucleossomos , Humanos , Proteína Centromérica A , Cromatina , Saccharomyces cerevisiae
2.
Mol Cell ; 72(5): 902-915.e7, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30392928

RESUMO

Chromatin adopts a diversity of regular and irregular fiber structures in vitro and in vivo. However, how an array of nucleosomes folds into and switches between different fiber conformations is poorly understood. We report the 9.7 Å resolution crystal structure of a 6-nucleosome array bound to linker histone H1 determined under ionic conditions that favor incomplete chromatin condensation. The structure reveals a flat two-start helix with uniform nucleosomal stacking interfaces and a nucleosome packing density that is only half that of a twisted 30-nm fiber. Hydroxyl radical footprinting indicates that H1 binds the array in an on-dyad configuration resembling that observed for mononucleosomes. Biophysical, cryo-EM, and crosslinking data validate the crystal structure and reveal that a minor change in ionic environment shifts the conformational landscape to a more compact, twisted form. These findings provide insights into the structural plasticity of chromatin and suggest a possible assembly pathway for a 30-nm fiber.


Assuntos
DNA/química , Histonas/química , Proteína 1 de Modelagem do Nucleossomo/química , Nucleossomos/ultraestrutura , Animais , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Radical Hidroxila/química , Modelos Moleculares , Proteína 1 de Modelagem do Nucleossomo/genética , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
3.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38281187

RESUMO

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Assuntos
Senilidade Prematura , Histonas , Fibras Musculares Esqueléticas , Animais , Camundongos , Senilidade Prematura/genética , DNA , Quebras de DNA de Cadeia Dupla , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleossomos
4.
Mol Cell ; 66(3): 384-397.e8, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475873

RESUMO

Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Pareamento de Bases , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , Microscopia Crioeletrônica , DNA/química , DNA/genética , Histonas/química , Humanos , Modelos Moleculares , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Tempo , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Nucleic Acids Res ; 51(16): 8864-8879, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503845

RESUMO

Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Dimerização , Filogenia , DNA/genética , DNA/metabolismo , Sítios de Ligação , Receptores de Estrogênio/genética
6.
BMC Biol ; 22(1): 188, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218869

RESUMO

BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas , Poli(ADP-Ribose) Polimerase-1 , Ubiquitinação , Histonas/metabolismo , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Estresse Oxidativo , Nucleossomos/metabolismo
7.
Mol Cell ; 63(4): 674-685, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499292

RESUMO

CENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome. Our biochemical, proteomic, and genetic data reveal that higher flexibility of DNA ends impairs histone H1 binding to the CENP-A nucleosome. Substituting the 2-turn αN-helix of CENP-A with the 3-turn αN-helix of H3 results in compact particles with rigidified DNA ends, able to bind histone H1. In vivo replacement of CENP-A with H3-CENP-A hybrid nucleosomes leads to H1 recruitment, delocalization of kinetochore proteins, and significant mitotic and cytokinesis defects. Our data reveal that the evolutionarily conserved flexible ends of the CENP-A nucleosomes are essential to ensure the fidelity of the mitotic pathway.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Nucleossomos/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/ultraestrutura , Sítios de Ligação , Proteína Centromérica A , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Citocinese , DNA/química , Genótipo , Células HeLa , Humanos , Cinetocoros/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/ultraestrutura , Fenótipo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade , Transfecção
8.
Nucleic Acids Res ; 50(13): 7350-7366, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766398

RESUMO

The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.


Assuntos
Histonas , RNA Interferente Pequeno/metabolismo , Retroelementos , Espermatogênese , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Cromossomos Sexuais/metabolismo
9.
J Chem Inf Model ; 63(12): 3839-3853, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37307148

RESUMO

Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/química , DNA/química , Regulação da Expressão Gênica
10.
BMC Biol ; 20(1): 217, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199108

RESUMO

BACKGROUND: Nuclear receptors are transcription factors of central importance in human biology and associated diseases. Much of the knowledge related to their major functions, such as ligand and DNA binding or dimerization, derives from functional studies undertaken in classical model animals. It has become evident, however, that a deeper understanding of these molecular functions requires uncovering how these characteristics originated and diversified during evolution, by looking at more species. In particular, the comprehension of how dimerization evolved from ancestral homodimers to a more sophisticated state of heterodimers has been missing, due to a too narrow phylogenetic sampling. Here, we experimentally and phylogenetically define the evolutionary trajectory of nuclear receptor dimerization by analyzing a novel NR7 subgroup, present in various metazoan groups, including cnidarians, annelids, mollusks, sea urchins, and amphioxus, but lost in vertebrates, arthropods, and nematodes. RESULTS: We focused on NR7 of the cephalochordate amphioxus B. lanceolatum. We present a complementary set of functional, structural, and evolutionary analyses that establish that NR7 lies at a pivotal point in the evolutionary trajectory from homodimerizing to heterodimerizing nuclear receptors. The crystal structure of the NR7 ligand-binding domain suggests that the isolated domain is not capable of dimerizing with the ubiquitous dimerization partner RXR. In contrast, the full-length NR7 dimerizes with RXR in a DNA-dependent manner and acts as a constitutively active receptor. The phylogenetic and sequence analyses position NR7 at a pivotal point, just between the basal class I nuclear receptors that form monomers or homodimers on DNA and the derived class II nuclear receptors that exhibit the classical DNA-independent RXR heterodimers. CONCLUSIONS: Our data suggest that NR7 represents the "missing link" in the transition between class I and class II nuclear receptors and that the DNA independency of heterodimer formation is a feature that was acquired during evolution. Our studies define a novel paradigm of nuclear receptor dimerization that evolved from DNA-dependent to DNA-independent requirements. This new concept emphasizes the importance of DNA in the dimerization of nuclear receptors, such as the glucocorticoid receptor and other members of this pharmacologically important oxosteroid receptor subfamily. Our studies further underline the importance of studying emerging model organisms for supporting cutting-edge research.


Assuntos
Receptores de Glucocorticoides , Receptores do Ácido Retinoico , Animais , DNA , Dimerização , Humanos , Cetosteroides , Ligantes , Filogenia , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/genética , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo
11.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630248

RESUMO

Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Apoptose , Ciclo Celular , Epigênese Genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
12.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33554340

RESUMO

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Assuntos
Bases de Dados como Assunto , Neoplasias/patologia , Humanos
13.
Nucleic Acids Res ; 48(10): 5735-5748, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32313946

RESUMO

The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one ('left') 601 DNA end is well ordered whereas the other ('right') end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.


Assuntos
Proteína Centromérica A/química , DNA/química , Nucleossomos/química , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Nucleossomos/ultraestrutura
14.
Nucleic Acids Res ; 48(9): 4601-4613, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266374

RESUMO

While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.


Assuntos
Histonas/fisiologia , Músculo Esquelético/metabolismo , Transcrição Gênica , Ativação Transcricional , Animais , Diferenciação Celular , Células Cultivadas , Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Histonas/genética , Histonas/metabolismo , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético/citologia , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Sítio de Iniciação de Transcrição
15.
Nucleic Acids Res ; 47(3): 1051-1069, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30590707

RESUMO

The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Cromatina/metabolismo , Neoplasias/genética , Animais , Centrômero/química , Epigênese Genética , Humanos , Neoplasias/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo
16.
Genome Res ; 27(6): 934-946, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348165

RESUMO

DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC, and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionarily conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m, and L1Md-LINEs. DNA methylation controls the expression of these retroelements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of a novel epigenetic code for the most recently acquired evolutionarily conserved repeats that could play a major role in cell differentiation.


Assuntos
Metilação de DNA , Epigênese Genética , Fibroblastos/metabolismo , Genoma , Células-Tronco Embrionárias Murinas/metabolismo , Sequências Repetitivas de Ácido Nucleico , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular , Citosina/análogos & derivados , Citosina/metabolismo , Elementos de DNA Transponíveis , Fibroblastos/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Cultura Primária de Células , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo
17.
Nature ; 505(7485): 648-53, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24463511

RESUMO

H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 Å resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal α-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.


Assuntos
Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/genética , Imunoprecipitação da Cromatina , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Genoma Humano/genética , Histonas/química , Histonas/isolamento & purificação , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Proteínas Nucleares/química , Nucleossomos/química , Nucleossomos/metabolismo , Fosfoproteínas/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
19.
Bioinformatics ; 34(17): 3004-3012, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635310

RESUMO

Motivation: Single-molecule localization microscopy (SMLM) can play an important role in integrated structural biology approaches to identify, localize and determine the 3D structure of cellular structures. While many tools exist for the 3D analysis and visualization of crystal or cryo-EM structures little exists for 3D SMLM data, which can provide unique insights but are particularly challenging to analyze in three dimensions especially in a dense cellular context. Results: We developed 3DClusterViSu, a method based on 3D Voronoi tessellations that allows local density estimation, segmentation and quantification of 3D SMLM data and visualization of protein clusters within a 3D tool. We show its robust performance on microtubules and histone proteins H2B and CENP-A with distinct spatial distributions. 3DClusterViSu will favor multi-scale and multi-resolution synergies to allow integrating molecular and cellular levels in the analysis of macromolecular complexes. Availability and impementation: 3DClusterViSu is available under http://cbi-dev.igbmc.fr/cbi/voronoi3D. Supplementary information: Supplementary figures are available at Bioinformatics online.


Assuntos
Análise por Conglomerados , Imagem Individual de Molécula , Proteína Centromérica A/análise , Histonas/análise , Humanos , Imageamento Tridimensional , Software
20.
PLoS Genet ; 12(7): e1006221, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467129

RESUMO

FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/biossíntese , Células HeLa , Proteínas de Grupo de Alta Mobilidade/biossíntese , Histonas/metabolismo , Humanos , Nucleossomos/genética , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/biossíntese , Uracila/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa