Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 69(18): 4395-4402, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29982623

RESUMO

The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored lipids with a targeted structure can be conceived. In this study we demonstrate the successful implementation of such an approach by metabolically engineering the oilseed crop Camelina sativa to produce 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) with medium-chain fatty acids (MCFAs). Different transgenic camelina lines that had been genetically modified to produce MCFAs through the expression of MCFA-specific thioesterases and acyltransferases were retransformed with the Euonymus alatus gene for diacylglycerol acetyltransferase (EaDAcT) that synthesises acetyl-TAGs. Concomitant RNAi suppression of acyl-CoA:diacylglycerol acyltransferase increased the levels of acetyl-TAG, with up to 77 mole percent in the best lines. However, the total oil content was reduced. Analysis of the composition of the acetyl-TAG molecular species using electrospray ionisation mass spectrometry demonstrated the successful synthesis of acetyl-TAG containing MCFAs. Field growth of high-yielding plants generated enough oil for quantification of viscosity. As part of an ongoing design-test-learn cycle, these results, which include not only the synthesis of 'designer' lipids but also their functional analysis, will lead to the future production of such molecules tailored for specific applications.


Assuntos
Brassicaceae/química , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Euonymus/genética , Engenharia Metabólica , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa