Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 476(10): 3655-3670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34052945

RESUMO

As a response to pro-inflammatory signals mesenchymal stem cells (MSCs) secrete agents and factors leading to lymphocyte recruitment, counteracting inflammation, and stimulating immunosuppression. On a molecular level, the signalling mediator TGF-ß-activated kinase 1 (TAK1) is activated by many pro-inflammatory signals, plays a critical role in inflammation and regulates innate and adaptive immune responses as well. While the role of TAK1 as a signalling factor promoting inflammation is well documented, we also considered a role for TAK1 in anti-inflammatory actions exerted by activated MSCs. We, therefore, investigated the capacity of lipopolysaccharide (LPS)-treated murine MSCs with lentivirally modulated TAK1 expression levels to recruit lymphocytes. TAK1 downregulated by lentiviral vectors expressing TAK1 shRNA in murine MSCs interfered with the capacity of murine MSCs to chemoattract lymphocytes, indeed. Analysing a pool of 84 secreted factors we found that among 26 secreted cytokines/factors TAK1 regulated expression of one cytokine in LPS-activated murine MSCs in particular: interleukin-6 (IL-6). IL-6 in LPS-treated MSCs was responsible for lymphocyte recruitment as substantiated by neutralizing antibodies. Our studies, therefore, suggest that in LPS-treated murine MSCs the inflammatory signalling mediator TAK1 may exert anti-inflammatory properties via IL-6.


Assuntos
Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Animais , Células HEK293 , Humanos , Interleucina-6/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos
2.
Cytotherapy ; 22(11): 653-668, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32855067

RESUMO

BACKGROUND AIMS: Mesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues. METHODS: MSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium. RESULTS: Large differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected. CONCLUSIONS: The results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Especificidade de Órgãos , Tecido Adiposo/citologia , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Reprodutibilidade dos Testes , Tetraspaninas/metabolismo , Doadores de Tecidos
3.
J Neurosci Res ; 97(11): 1414-1429, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257632

RESUMO

The use of neurotrophic factors as therapeutic agents for neurodegenerative diseases is considered as an approach aimed at restoring and maintaining neuronal function in the peripheral and central nervous system. Since the neuroprotective effect is depending on chronic delivery of the neurotrophic factors a sustained application, e.g., via cell-based delivery is necessary. Human mesenchymal stem cells (hMSCs) were lentivirally modified to overexpress brain-derived neurotrophic factor (BDNF) and to express fluorescent marker genes for easy visualization. Since genetically modified cells should be site-specifically retained (e.g., by encapsulation) in the patients to avoid adverse effects the cells were additionally differentiated to chondrocytes to hypothetically improve their vitality and survival in a delivery matrix. Different polycations for lentiviral transduction were investigated for their efficiency. The success of differentiation was determined by analysis of chondrocyte marker genes and the neuroprotective effect of BDNF-overexpressing cells was exemplarily investigated on neurons of the peripheral auditory system. The genetically modified hMSCs overexpressed BDNF from under 1 to 125 ng ml-1  day-1 depending on the donor and transfection method. Using protamine sulfate the transfection efficacy was superior compared to the use of polybrene. The BDNF secreted by the MSCs was significantly neuroprotective in comparison to the relevant controls even though the produced mean concentrations were lower than the effective concentrations for recombinant industrially produced proteins described in literature. The presented system of BDNF-overexpressing hMSCs is neuroprotective and is therefore considered as a promising method for sustained delivery of proteins in therapeutically relevant amounts to degenerating neuronal structures.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condrócitos/metabolismo , Engenharia Genética/métodos , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular , Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neurônios/metabolismo
4.
J Tissue Eng ; 11: 2041731420911313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341778

RESUMO

The cochlear implant outcome is possibly improved by brain-derived neurotrophic factor treatment protecting spiral ganglion neurons. Implantation of genetically modified mesenchymal stem cells may enable the required long-term brain-derived neurotrophic factor administration. Encapsulation of mesenchymal stem cells in ultra-high viscous alginate may protect the mesenchymal stem cells from the recipient's immune system and prevent their uncontrolled migration. Alginate stability and survival of mesenchymal stem cells in alginate were evaluated. Brain-derived neurotrophic factor production was measured and its protective effect was analyzed in dissociated rat spiral ganglion neuron co-culture. Since the cochlear implant is an active electrode, alginate-mesenchymal stem cell samples were electrically stimulated and alginate stability and mesenchymal stem cell survival were investigated. Stability of ultra-high viscous-alginate and alginate-mesenchymal stem cells was proven. Brain-derived neurotrophic factor production was detectable and spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth were increased. Moderate electrical stimulation did not affect the mesenchymal stem cell survival and their viability was good within the investigated time frame. Local drug delivery by ultra-high viscous-alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells is a promising strategy to improve the cochlear implant outcome.

5.
Cells ; 9(7)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610653

RESUMO

Mesenchymal stromal cells (MSCs) are a promising cell source for tissue engineering and regenerative medicine. In our lab, we found that MSC preparations from bone marrow of many different donors had a limited capacity of in vitro differentiation into osteogenic and chondrogenic lineages-a capacity claimed to be inherent to MSCs. The current study was designed to test the hypothesis that the amount of heparin used as anticoagulant during bone marrow harvest had an inhibitory influence on the in vitro differentiation capacity of isolated MSCs. Bone marrow was obtained from the femoral cavity of twelve donors during total hip arthroplasty in the absence or presence of heparin. No coagulation was observed in the absence of heparin. The number of mononuclear cells was independent of heparin addition. Isolated MSCs were characterized by morphology, population doubling times, expression of cell surface antigens and in vitro differentiation. Results of these analyses were independent of the amount of heparin. Transcriptome analyses of cells from three randomly chosen donors and quantitative realtime PCR (qRT-PCR) analysis from cells of all donors demonstrated no clear effect of heparin on the transcriptome of the cells. This excludes heparin as a potential source of disparate results.


Assuntos
Anticoagulantes/farmacologia , Heparina/farmacologia , Células-Tronco Mesenquimais/citologia , Adulto , Idoso , Células da Medula Óssea , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteogênese/efeitos dos fármacos
6.
Front Cell Neurosci ; 13: 177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139049

RESUMO

Background: The success of a cochlear implant (CI), which is the standard therapy for patients suffering from severe to profound sensorineural hearing loss, depends on the number and excitability of spiral ganglion neurons (SGNs). Brain-derived neurotrophic factor (BDNF) has a protective effect on SGNs but should be applied chronically to guarantee their lifelong survival. Long-term administration of BDNF could be achieved using genetically modified mesenchymal stem cells (MSCs), but these cells should be protected - by ultra-high viscous (UHV-) alginate ('alginate-MSCs') - from the recipient immune system and from uncontrolled migration. Methods: Brain-derived neurotrophic factor-producing MSCs were encapsulated in UHV-alginate. Four experimental groups were investigated using guinea pigs as an animal model. Three of them were systemically deafened and (unilaterally) received one of the following: (I) a CI; (II) an alginate-MSC-coated CI; (III) an injection of alginate-embedded MSCs into the scala tympani followed by CI insertion and alginate polymerization. Group IV was normal hearing, with CI insertion in both ears and a unilateral injection of alginate-MSCs. Using acoustically evoked auditory brainstem response measurements, hearing thresholds were determined before implantation and before sacrificing the animals. Electrode impedance was measured weekly. Four weeks after implantation, the animals were sacrificed and the SGN density and degree of fibrosis were evaluated. Results: The MSCs survived being implanted for 4 weeks in vivo. Neither the alginate-MSC injection nor the coating affected electrode impedance or fibrosis. CI insertion with and without previous alginate injection in normal-hearing animals resulted in increased hearing thresholds within the high-frequency range. Low-frequency hearing loss was additionally observed in the alginate-injected and implanted cochleae, but not in those treated only with a CI. In deafened animals, the alginate-MSC coating of the CI significantly prevented SGN from degeneration, but the injection of alginate-MSCs did not. Conclusion: Brain-derived neurotrophic factor-producing MSCs encapsulated in UHV-alginate prevent SGNs from degeneration in the form of coating on the CI surface, but not in the form of an injection. No increase in fibrosis or impedance was detected. Further research and development aimed at verifying long-term mechanical and biological properties of coated electrodes in vitro and in vivo, in combination with chronic electrical stimulation, is needed before the current concept can be tested in clinical trials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa