Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
3.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683873

RESUMO

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Assuntos
Antituberculosos , Modelos Animais de Doenças , Macrófagos , Mycobacterium tuberculosis , Oxidiazóis , Tuberculose , Zinco , Animais , Oxidiazóis/farmacologia , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Zinco/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Tuberculose/tratamento farmacológico , Camundongos Endogâmicos C57BL , Feminino , Sinergismo Farmacológico
4.
Nature ; 580(7805): E20, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32350466

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
PLoS Pathog ; 19(7): e1011159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486946

RESUMO

NK cells are important mediators of innate immunity and play an essential role for host protection against infection, although their responses to bacteria are poorly understood. Recently NK cells were shown to display memory properties, as characterized by an epigenetic signature leading to a stronger secondary response. Although NK cell memory could be a promising mechanism to fight against infection, it has not been described upon bacterial infection. Using a mouse model, we reveal that NK cells develop specific and long-term memory following sub-lethal infection with the extracellular pathogen Streptococcus pneumoniae. Memory NK cells display intrinsic sensing and response to bacteria in vitro, in a manner that is enhanced post-bacterial infection. In addition, their transfer into naïve mice confers protection from lethal infection for at least 12 weeks. Interestingly, NK cells display enhanced cytotoxic molecule production upon secondary stimulation and their protective role is dependent on Perforin and independent of IFNγ. Thus, our study identifies a new role for NK cells during bacterial infection, opening the possibility to harness innate immune memory for therapeutic purposes.


Assuntos
Células Matadoras Naturais , Streptococcus pneumoniae , Imunidade Inata , Perforina
6.
PLoS Pathog ; 17(12): e1010173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929015

RESUMO

For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection.


Assuntos
Histonas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Sirtuína 3/metabolismo , Animais , Sobrevivência Celular/fisiologia , Humanos , Listeria monocytogenes/metabolismo
7.
Cell Microbiol ; 22(4): e13169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185898

RESUMO

By modifying the host cell transcription programme, pathogenic bacteria disrupt a wide range of cellular processes and take control of the host's immune system. Conversely, by mobilising a network of defence genes, the host cells trigger various responses that allow them to tolerate or eliminate invaders. The study of the molecular basis of this crosstalk is crucial to the understanding of infectious diseases. Although research has long focused on the targeting of eukaryotic DNA-binding transcription factors, more recently, another powerful way by which bacteria modify the expression of host genes has emerged: chromatin modifications in the cell nucleus. One of the most prolific bacterial models in this area has been Listeria monocytogenes, a facultative intracellular bacterium responsible for serious food-borne infections. Here, we aim to highlight the contribution of this model to the field of bacteria-mediated chromatin modifications. We will first recall the general principles of epigenetic regulation and then illustrate five mechanisms that mobilise the epigenetic machinery in response to Listeria factors, either through bacterial molecular patterns, a toxin, an invasion protein, or nucleomodulins. Strategies used by Listeria to control the expression of host genes at the chromatin level, by activation of cytosolic signalling pathways or direct targeting of epifactors in the nucleus, have contributed to the emergence of a new discipline combining cellular microbiology and epigenetics: "patho-epigenetics."


Assuntos
Cromatina , Epigênese Genética , Interações Hospedeiro-Patógeno/genética , Listeria monocytogenes/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Virulência
8.
Mol Cell Proteomics ; 17(8): 1627-1636, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752379

RESUMO

Bacterial pathogens use various strategies to interfere with host cell functions. Among these strategies, bacteria modulate host gene transcription, thereby modifying the set of proteins synthetized by the infected cell. Bacteria can also target pre-existing host proteins and modulate their post-translational modifications or trigger their degradation. Analysis of protein levels variations in host cells during infection allows to integrate both transcriptional and post-transcriptional regulations induced by pathogens. Here, we focused on host proteome alterations induced by the toxin Listeriolysin O (LLO), secreted by the bacterial pathogen Listeria monocytogenes. We showed that a short-term treatment with LLO remodels the host cell proteome by specifically decreasing the abundance of 149 proteins. The same decrease in host protein levels was observed in different epithelial cell lines but not in macrophages. We show in particular that this proteome remodeling affects several ubiquitin and ubiquitin-like ligases and that LLO leads to major changes in the host ubiquitylome. Strikingly, this toxin-induced proteome remodeling involves only post-transcriptional regulations, as no modification in the transcription levels of the corresponding genes was observed. In addition, we could show that Perfringolysin O, another bacterial pore-forming toxin similar to LLO, also induces host proteome changes. Taken together, our data reveal that different bacterial pore-forming toxins induce important host proteome remodeling, that may impair epithelial cell functions.


Assuntos
Toxinas Bacterianas/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/toxicidade , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células HeLa , Células Hep G2 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Células RAW 264.7 , Ubiquitinação/efeitos dos fármacos
9.
Semin Immunol ; 28(4): 351-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27264334

RESUMO

Innate and adaptive immunity have evolved as sophisticated mechanisms of host defence against invading pathogens. Classically the properties attributed to innate immunity are its rapid pleiotropic response, and to adaptive immunity its specificity and ability to retain a long-term memory of past infections. It is now clear that innate immunity also contributes to raising a memory response upon pathogenic assault. In this review we will discuss the interaction between bacterial, viral, fungal and parasitic molecular patterns and innate immune cells in which a memory response is imposed, or has the potential to be imposed.


Assuntos
Imunidade Inata , Memória Imunológica , Infecções/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Mamíferos/imunologia , Monócitos/imunologia , Imunidade Adaptativa , Animais , Antígenos Virais/imunologia , Humanos , Células Matadoras Naturais/virologia , Macrófagos/virologia , Monócitos/virologia , Moléculas com Motivos Associados a Patógenos/imunologia
10.
PLoS Pathog ; 10(10): e1004470, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340842

RESUMO

The DNA damage response (DDR) is an essential signaling pathway that detects DNA lesions, which constantly occur upon either endogenous or exogenous assaults, and maintains genetic integrity. An infection by an invading pathogen is one such assault, but how bacteria impact the cellular DDR is poorly documented. Here, we report that infection with Listeria monocytogenes induces host DNA breaks. Strikingly, the signature response to these breaks is only moderately activated. We uncover the role of the listerial toxin listeriolysin O (LLO) in blocking the signaling response to DNA breaks through degradation of the sensor Mre11. Knocking out or inactivating proteins involved in the DDR promotes bacterial replication showing the importance of this mechanism for the control of infection. Together, our data highlight that bacterial dampening of the DDR is critical for a successful listerial infection.


Assuntos
Dano ao DNA , Replicação do DNA/genética , Listeria monocytogenes/genética , Listeriose/genética , Animais , Toxinas Bacterianas/farmacologia , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Humanos , Camundongos , Transdução de Sinais/genética
11.
Nature ; 464(7292): 1192-5, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20414307

RESUMO

During infection, pathogenic bacteria manipulate the host cell in various ways to allow their own replication, propagation and escape from host immune responses. Post-translational modifications are unique mechanisms that allow cells to rapidly, locally and specifically modify activity or interactions of key proteins. Some of these modifications, including phosphorylation and ubiquitylation, can be induced by pathogens. However, the effects of pathogenic bacteria on SUMOylation, an essential post-translational modification in eukaryotic cells, remain largely unknown. Here we show that infection with Listeria monocytogenes leads to a decrease in the levels of cellular SUMO-conjugated proteins. This event is triggered by the bacterial virulence factor listeriolysin O (LLO), which induces a proteasome-independent degradation of Ubc9, an essential enzyme of the SUMOylation machinery, and a proteasome-dependent degradation of some SUMOylated proteins. The effect of LLO on Ubc9 is dependent on the pore-forming capacity of the toxin and is shared by other bacterial pore-forming toxins like perfringolysin O (PFO) and pneumolysin (PLY). Ubc9 degradation was also observed in vivo in infected mice. Furthermore, we show that SUMO overexpression impairs bacterial infection. Together, our results reveal that Listeria, and probably other pathogens, dampen the host response by decreasing the SUMOylation level of proteins critical for infection.


Assuntos
Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Listeriose/microbiologia , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Linhagem Celular , Células HeLa , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Camundongos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Fatores de Virulência/metabolismo
12.
J Org Chem ; 79(5): 1900-12, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24533649

RESUMO

Intramolecular and intermolecular alkylations of carbocation precursors of limited ionization ability, principally N,O-acetals, without the use of an exogenous reagent have been developed. The reactions are carried out in 1,1,2,2-tetrachloroethane (TCE) and take advantage of the ability of this solvent to continuously release small amounts of HCl by thermolytic elimination. A study of the reaction led to several improved protocols such as (1) preheated TCE, (2) microwave-assisted reactions, and (3) flow or sealed-tube conditions, which allow significant reaction rate enhancements and made possible some challenging reactions such as the α-amidoalkylation of ketones. Studies using flow chemistry confirmed not only that very low concentrations of HCl generated from the solvent were responsible for the reactivity but also that TCE had additional beneficial properties in comparison to other chlorinated solvents such as dichloroethane. The method can easily be extended to the alkylation using proelectrophiles such as π-activated alcohols, which are normally unreactive toward HCl catalysis. This work represents the first successful use of HCl, the simplest strong Brønsted acid, as an efficient alkylation catalyst.


Assuntos
Acetais/química , Álcoois/química , Etano/análogos & derivados , Hidrocarbonetos Clorados/química , Alquilação , Catálise , Etano/química , Indicadores e Reagentes/química , Micro-Ondas , Estrutura Molecular , Solventes/química
13.
Curr Opin Microbiol ; 80: 102505, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936013

RESUMO

Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.

14.
Nat Commun ; 15(1): 5545, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956024

RESUMO

Epithelial cells are the first point of contact for bacteria entering the respiratory tract. Streptococcus pneumoniae is an obligate human pathobiont of the nasal mucosa, carried asymptomatically but also the cause of severe pneumoniae. The role of the epithelium in maintaining homeostatic interactions or mounting an inflammatory response to invasive S. pneumoniae is currently poorly understood. However, studies have shown that chromatin modifications, at the histone level, induced by bacterial pathogens interfere with the host transcriptional program and promote infection. Here, we uncover a histone modification induced by S. pneumoniae infection maintained for at least 9 days upon clearance of bacteria with antibiotics. Di-methylation of histone H3 on lysine 4 (H3K4me2) is induced in an active manner by bacterial attachment to host cells. We show that infection establishes a unique epigenetic program affecting the transcriptional response of epithelial cells, rendering them more permissive upon secondary infection. Our results establish H3K4me2 as a unique modification induced by infection, distinct from H3K4me3 or me1, which localizes to enhancer regions genome-wide. Therefore, this study reveals evidence that bacterial infection leaves a memory in epithelial cells after bacterial clearance, in an epigenomic mark, thereby altering cellular responses to subsequent infections and promoting infection.


Assuntos
Células Epiteliais , Histonas , Infecções Pneumocócicas , Streptococcus pneumoniae , Histonas/metabolismo , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Metilação , Humanos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/metabolismo , Epigênese Genética , Animais , Camundongos , Lisina/metabolismo , Camundongos Endogâmicos C57BL
15.
Eur J Cell Biol ; 103(1): 151381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183814

RESUMO

The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.


Assuntos
Fosfatos de Fosfatidilinositol , Shigella , Humanos , Shigella/fisiologia , Vacúolos/metabolismo , Células Epiteliais/fisiologia , Shigella flexneri/genética , Células HeLa , Nexinas de Classificação/metabolismo
16.
J Biol Chem ; 286(30): 26987-95, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21646350

RESUMO

Autophagy is an important mechanism of innate immune defense. We have recently shown that autophagy components are recruited with septins, a new and increasingly characterized cytoskeleton component, to intracytosolic Shigella that have started to polymerize actin. On the other hand, intracytosolic Listeria avoids autophagy recognition by expressing ActA, a bacterial effector required for actin polymerization. Here, we exploit Shigella and Listeria as intracytosolic tools to characterize different pathways of selective autophagy. We show that the ubiquitin-binding adaptor proteins p62 and NDP52 target Shigella to an autophagy pathway dependent upon septin and actin. In contrast, p62 or NDP52 targets the Listeria ActA mutant to an autophagy pathway independent of septin or actin. TNF-α, a host cytokine produced upon bacterial infection, stimulates p62-mediated autophagic activity and restricts the survival of Shigella and the Listeria ActA mutant. These data provide a new molecular framework to understand the emerging complexity of autophagy and its ability to achieve specific clearance of intracytosolic bacteria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Disenteria Bacilar/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Proteínas Nucleares/metabolismo , Shigella flexneri/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Bactérias , Citosol/metabolismo , Citosol/microbiologia , Disenteria Bacilar/genética , Células HeLa , Humanos , Listeria monocytogenes/genética , Listeriose/genética , Proteínas de Membrana , Mutação , Proteínas Nucleares/genética , Septinas/genética , Septinas/metabolismo , Proteína Sequestossoma-1 , Shigella flexneri/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Infect Immun ; 79(7): 2839-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21482680

RESUMO

Chromatin modification triggered by bacteria is a newly described mechanism by which pathogens impact host transcription. Listeria monocytogenes dephosphorylates histone H3 through the action of listeriolysin O (LLO); however, the underlying mechanism is unknown. Here we show that an unrelated pore-forming toxin, Aeromonas aerolysin, also provokes H3 dephosphorylation (dePH3). As reported for aerolysin, we show that LLO and related toxins induce a pore-dependent K(+) efflux and that this efflux is the signal required for dePH3. In addition, LLO-induced K(+) efflux activates caspase-1. However, we demonstrate that dePH3 is unlinked to this activation. Therefore, our study unveils K(+) efflux as an important signal leading to two independent events critical for infection, inflammasome activation and histone modification.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Histonas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Potássio/metabolismo , Toxinas Bacterianas/genética , Caspase 1/metabolismo , Linhagem Celular Tumoral , Colesterol/farmacologia , Cromatina/metabolismo , Citotoxinas/metabolismo , Células HeLa , Humanos , Immunoblotting , Inflamassomos/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
18.
Nat Microbiol ; 6(2): 257-269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349663

RESUMO

Streptococcus pneumoniae is a natural colonizer of the human respiratory tract and an opportunistic pathogen. Although epithelial cells are among the first to encounter pneumococci, the cellular processes and contribution of epithelial cells to the host response are poorly understood. Here, we show that a S. pneumoniae serotype 6B ST90 strain, which does not cause disease in a murine infection model, induces a unique NF-κB signature response distinct from an invasive-disease-causing isolate of serotype 4 (TIGR4). This signature is characterized by activation of p65 and requires a histone demethylase KDM6B. We show, molecularly, that the interaction of the 6B strain with epithelial cells leads to chromatin remodelling within the IL-11 promoter in a KDM6B-dependent manner, where KDM6B specifically demethylates histone H3 lysine 27 dimethyl. Remodelling of the IL-11 locus facilitates p65 access to three NF-κB sites that are otherwise inaccessible when stimulated by IL-1ß or TIGR4. Finally, we demonstrate through chemical inhibition of KDM6B with GSK-J4 inhibitor and through exogenous addition of IL-11 that the host responses to the 6B ST90 and TIGR4 strains can be interchanged both in vitro and in a murine model of infection in vivo. Our studies therefore reveal how a chromatin modifier governs cellular responses during infection.


Assuntos
Montagem e Desmontagem da Cromatina , Interações Hospedeiro-Patógeno/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/patogenicidade , Células A549 , Células Epiteliais Alveolares , Animais , Benzazepinas/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Humanos , Interleucina-11/genética , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Infecções Pneumocócicas/enzimologia , Infecções Pneumocócicas/genética , Regiões Promotoras Genéticas , Pirimidinas/farmacologia
19.
Appl Environ Microbiol ; 76(11): 3625-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20363781

RESUMO

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen which invades different cell types, including nonphagocytic cells, where it is able to replicate and survive. The different steps of the cellular infectious process have been well described and consist of bacterial entry, lysis of the endocytic vacuole, intracellular replication, and spreading to neighboring cells. To study the listerial infectious process, gentamicin survival assays, plaque formation, and direct microscopy observations are typically used; however, there are some caveats with each of these techniques. In this study we describe new single-cell techniques based on use of an array of integrative fluorescent plasmids (green, cyan, and yellow fluorescent proteins) to easily, rapidly, and quantitatively detect L. monocytogenes in vitro and in vivo. We describe construction of 13 integrative and multicopy plasmids which can be used for detecting intracellular bacteria, for measuring invasion, cell-to-cell spreading, and intracellular replication, for monitoring in vivo infections, and for generating transcriptional or translational reporters. Furthermore, we tested these plasmids in a variety of epifluorescence- and flow cytometry-based assays. We showed that we could (i) determine the expression of a particular promoter during the cell cycle, (ii) establish in one rapid experiment at which step in the cell cycle a particular mutant is defective, and (iii) easily measure the number of infected cells in vitro and in mouse organs. The plasmids that are described and the methods to detect them are new powerful tools to study host-Listeria interactions in a fast, robust, and high-throughput manner.


Assuntos
Técnicas Bacteriológicas/métodos , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Biologia Molecular/métodos , Coloração e Rotulagem/métodos , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Semin Immunopathol ; 42(2): 201-213, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020336

RESUMO

In the long co-evolution of host-pathogen interaction, bacteria have developed sophisticated strategies to manipulate host cell mechanisms and reprogram host transcription. Targeting chromatin, mainly through post-translational modification (PTM) of histone proteins, is one strategy that has been revealed over the last decade. Indeed, histone modifications play a crucial role in regulating transcription during cell type and stimulus specific responses, making them good targets during infection. Therefore, the study of host-pathogen interactions provides breakthroughs in understanding virulence mechanisms, but also in host cell mechanisms. Although chromatin is regulated by DNA methylation, noncoding RNAs, and post-translational modifications of histones, most studies have concentrated on bacteria-induced histone modifications, which will be the focus of this review. We will discuss the different mechanisms used by bacteria to induce histone PTMs, whether it is through direct targeting of pathogen effector enzymes, or indirectly through modulation of cellular signaling cascade. We will summarize the concepts we learned in cell biology from exploring bacteria-triggered histone modifications, by focusing on the signaling cascades modified by bacteria, bacterial mimics of eukaryotic enzymes, and the novel histone marks imposed upon infection.


Assuntos
Infecções Bacterianas , Eucariotos , Histonas , Cromatina , Eucariotos/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa