Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358805

RESUMO

Suppressor of fused (SUFU) is widely regarded as a key negative regulator of the sonic hedgehog (SHH) morphogenic pathway and a known tumor suppressor of medulloblastoma (MB). However, we report here that SUFU expression was markedly increased in 75% of specimens compiled in a tissue array comprising 49 unstratified MBs. The SUFU and GLI1 expression levels in this MB array showed strong positive correlation, which was also identified in a large public data set containing 736 MBs. We further report that increasing Sufu gene dosage in mice caused preaxial polydactyly, which was associated with the expansion of the Gli3 domain in the anterior limb bud and heightened Shh signaling responses during embryonic development. Increasing Sufu gene dosage also led to accelerated cerebellar development and, when combined with ablation of the Shh receptor encoded by Patched1 (Ptch1), promoted MB tumorigenesis. These data reveal multifaceted roles of SUFU in promoting MB tumorigenesis by enhancing SHH signaling. This revelation clarifies potentially counterintuitive clinical observation of high SUFU expression in MBs and may pave way for novel strategies to reduce or reverse MB progression.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Polidactilia , Camundongos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transformação Celular Neoplásica/genética , Fatores de Transcrição , Neoplasias Cerebelares/genética , Polidactilia/genética
2.
Cell Death Discov ; 7(1): 120, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021128

RESUMO

Although E3 ligase Speckle type BTB/POZ protein (SPOP) promotes tumorigenesis by acting as a key regulatory hub in clear cell renal cell carcinoma (ccRCC), the detailed molecular mechanism remains unclear. Here, we demonstrate that a well-known tumor suppressor, Suppressor of Fused (SUFU), is downregulated by SPOP. Interestingly, this downregulation depends on cullin-3(Cul3)-SPOP E3 ligase, but SUFU is not a direct substrate of SPOP. Phosphatase and tensin homolog (PTEN), a ubiquitinated substrate of SPOP, is involved in SPOP-mediated SUFU reduction. Importantly, inhibition of SUFU leads to elevated SHH and WNT signaling, consequently rescuing the reduced proliferation, migration, and invasion abilities of ccRCC cells caused by SPOP-knockdown. Moreover, combinatorial treatment with SHH and WNT inhibitors shows more effective for suppressing ccRCC cell proliferation and aggressiveness. These findings demonstrate that a novel SPOP-PTEN-SUFU axis promotes ccRCC carcinogenesis by activating SHH and WNT pathway, providing a new treatment strategy for ccRCC.

3.
Cell Death Dis ; 11(8): 686, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826873

RESUMO

Reversible phosphorylation of Suppressor of fused (Sufu) is essential for Sonic Hedgehog (Shh) signal transduction. Sufu is stabilized under dual phosphorylation of protein kinase A (PKA) and glycogen synthase kinase 3ß (GSK3ß). Its phosphorylation is reduced with the activation of Shh signaling. However, the phosphatase in this reversible phosphorylation has not been found. Taking advantage of a proteomic approach, we identified Protein phosphatase 4 regulatory subunit 2 (Ppp4r2), an interacting protein of Sufu. Shh signaling promotes the interaction of these two proteins in the nucleus, and Ppp4 also promotes dephosphorylation of Sufu, leading to its degradation and enhancing the Gli1 transcriptional activity. Finally, Ppp4-mediated dephosphorylation of Sufu promotes proliferation of medulloblastoma tumor cells, and expression of Ppp4 is positively correlated with up-regulation of Shh pathway target genes in the Shh-subtype medulloblastoma, underscoring the important role of this regulation in Shh signaling.


Assuntos
Proteínas Hedgehog/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Hedgehog/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Meduloblastoma/genética , Camundongos , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteômica/métodos , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa