Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(49): 31177-31188, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219123

RESUMO

A transplanted stem cell's engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell's "pathotropism." Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12-CXCR4 coupling. Alternatively, we chemically "mutated" CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a "designer" cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., "inflammo-attraction").


Assuntos
Quimiocina CXCL12/genética , Neurônios/metabolismo , Ligação Proteica/genética , Receptores CXCR4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Movimento Celular/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Inflamação/genética , Ligantes , Mutagênese/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Neurônios/patologia
2.
J Neurosci ; 37(38): 9222-9238, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842418

RESUMO

Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we used in vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in "labeled lines" within the hippocampus to process information during distinct behavioral states.SIGNIFICANCE STATEMENT The hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time and environments, suggesting there are separate dedicated circuits for processing information during locomotion and immobility. Understanding how the hippocampus switches between different network configurations may lead to therapeutic approaches to hippocampal-dependent dysfunctions, such as Alzheimer's disease or cognitive decline.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Descanso/fisiologia
3.
J Neurosci ; 33(4): 1314-25, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345207

RESUMO

Synapses onto distal dendritic tufts are believed to function by modulating time-locked proximal inputs; however, the role of these synapses when proximal inputs are asynchronous or silent is unknown. Surprisingly, we found that activation of apical tuft synapses alone resulted in heterosynaptic potentiation of proximal synapses. In mouse adult hippocampal CA1 pyramidal neurons, we show that activation of distal inputs from the entorhinal cortex (EC) specifically strengthens proximal synapses projecting from CA3. This slow AMPA receptor-mediated potentiation is accompanied by increased synaptic GluN2B-containing NMDA receptors, which are normally restricted to juvenile animals. These two synaptic modifications interact to generate striking bidirectional metaplastic changes. Heterosynaptically potentiated synapses become resistant to subsequent long-term potentiation (LTP) as the two forms of AMPA receptor-mediated potentiation occlude. However, this is only true when the LTP induction protocol is relatively weak. When it is strong and repeated, the magnitude of LTP after heterosynaptic plasticity is greatly increased, specifically through the activation of GluN2B-containing NMDA receptors. Thus, CA1 neurons expressing heterosynaptic potentiation induced by external sensory input from the EC become more strongly driven by internally generated environmental representations from CA3. Furthermore, subsequent SC LTP in this ensemble is shifted to potentiate only strongly activated CA3 inputs, while endowing these synapses with enhanced potentiation. These results show that one set of inputs can exert long-lasting heterosynaptic control over another, allowing the coupling of two functionally and spatially distinct pathways, thereby greatly expanding the repertoire of cellular and network plasticity.


Assuntos
Dendritos/fisiologia , Potenciação de Longa Duração/fisiologia , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp
4.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352351

RESUMO

Numerous studies have identified dopamine signaling in the hippocampus as necessary for certain types of learning and memory. Since dopamine in the striatum is strongly tied to rewards, dopamine in the hippocampus is thought to reinforce reward learning. Despite the critical influence of dopamine on hippocampal function, little is known about dopamine release in the hippocampus or the specific ways dopamine can influence hippocampal function. Based on the functional complexity of hippocampal circuitry, we hypothesized the existence of multiple dopamine signaling domains. Using optical dopamine sensors, two-photon imaging, and head-fixed behaviors, we identified two functionally and spatially distinct dopamine domains in the hippocampus. The "superficial" domain (cell somata and apical dendrites) showed reward-related dopamine transients early in Pavlovian conditioning but were replaced by "deep" domain transients (basal dendritic layer) with experience. These two domains also play distinct roles in a hippocampal-dependent, goal-directed virtual reality task where mice use exploratory licks to discover the location of a hidden reward zone. Here, positive dopamine ramps appeared in the superficial domain as mice approached the reward zone, similar to those seen in the striatum. At the same time, the deep domain showed strong reward-related transients. These results reveal small-scale, anatomically segregated, dopamine domains in the hippocampus. Furthermore dopamine domain activity had temporal-specificity for different phases of behavior. Finally, the subcellular scale of dopamine domains suggests specialized postsynaptic pathways for processing and integrating functionally distinct dopaminergic influences.

5.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585903

RESUMO

GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.

6.
Proc Natl Acad Sci U S A ; 106(26): 10817-22, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19509338

RESUMO

In response to decreased activity, neurons make global compensatory increases in excitatory synaptic strength. However, how neuronal maturity affects this process is unclear. We silenced cultured hippocampal neurons with TTX at 7 days in vitro, during rapid synaptogenesis, and at 14 days, when major synaptogenesis is complete. For each age, we have explored the effects of short (1 day) and longer (2 days) periods of silencing. We have confirmed that the changes in synaptic strength depend on 2 main mechanisms, one presynaptic and the other postsynaptic. The presynaptic mechanism involves an increase in the probability of neurotransmitter release, mostly arising through an increase in the number of synaptic vesicles available for release. The postsynaptic mechanism operates through an increase in the number of postsynaptic receptors for the excitatory neurotransmitter glutamate. When neurons are silenced for 1 day, young neurons employ the postsynaptic mechanism, whereas more mature neurons increase their strength through the presynaptic mechanism. The postsynaptic strengthening in young neurons does not depend on gene transcription, whereas the presynaptic mechanism does. If neurons are silenced for 2 days, younger and older neurons employ both pre and postsynaptic mechanisms for synaptic strengthening. We also found evidence for 2 additional mechanisms that increased the effective synaptic coupling between neurons after 2 days of silencing: an increase in the number of synapses, and an increase in the electrotonic length of dendrites. These results expand our basic understanding of neuronal homeostasis, and reveal the developmental regulation of its expression mechanisms.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Imunofluorescência , Hipocampo/citologia , Cinética , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Long-Evans , Receptores de AMPA/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Sinaptofisina/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 106(16): 6766-71, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19342486

RESUMO

Mutations in doublecortin (DCX) are associated with intractable epilepsy in humans, due to a severe disorganization of the neocortex and hippocampus known as classical lissencephaly. However, the basis of the epilepsy in lissencephaly remains unclear. To address potential functional redundancy with murin Dcx, we targeted one of the closest homologues, doublecortin-like kinase 2 (Dclk2). Here, we report that Dcx; Dclk2-null mice display frequent spontaneous seizures that originate in the hippocampus, with most animals dying in the first few months of life. Elevated hippocampal expression of c-fos and loss of somatostatin-positive interneurons were identified, both known to correlate with epilepsy. Dcx and Dclk2 are coexpressed in developing hippocampus, and, in their absence, there is dosage-dependent disrupted hippocampal lamination associated with a cell-autonomous simplification of pyramidal dendritic arborizations leading to reduced inhibitory synaptic tone. These data suggest that hippocampal dysmaturation and insufficient receptive field for inhibitory input may underlie the epilepsy in lissencephaly, and suggest potential therapeutic strategies for controlling epilepsy in these patients.


Assuntos
Diferenciação Celular , Hipocampo/enzimologia , Hipocampo/patologia , Proteínas Associadas aos Microtúbulos/deficiência , Neurônios/enzimologia , Neuropeptídeos/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Convulsões/enzimologia , Animais , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/patologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo/embriologia , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Interneurônios/patologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Células Piramidais/patologia , Convulsões/patologia , Somatostatina/metabolismo , Análise de Sobrevida , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Desmame , Ácido gama-Aminobutírico/farmacologia
8.
Elife ; 82019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31591960

RESUMO

Inhibition plays a powerful role in regulating network excitation and plasticity; however, the activity of defined interneuron types during spatial exploration remain poorly understood. Using two-photon calcium imaging, we recorded hippocampal CA1 somatostatin- and parvalbumin-expressing interneurons as mice performed a goal-directed spatial navigation task in new visual virtual reality (VR) contexts. Activity in both interneuron classes was strongly suppressed but recovered as animals learned to adapt the previously learned task to the new spatial context. Surprisingly, although there was a range of activity suppression across the population, individual somatostatin-expressing interneurons showed consistent levels of activity modulation across exposure to multiple novel environments, suggesting context-independent, stable network roles during spatial exploration. This work reveals population-level temporally dynamic interneuron activity in new environments, within which each interneuron shows stable and consistent activity modulation.


Assuntos
Interneurônios/fisiologia , Realidade Virtual , Animais , Cálcio/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa