Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770710

RESUMO

The therapeutic efficacy of nanoscale drug delivery systems is related to particle size, zeta potential, morphology, and other physicochemical properties. The structure and composition of nanocarriers may affect their physicochemical properties. To systematically evaluate these characteristics, three analogues, namely polyethylene glycol (PEG), PEG-conjugated octadecylamine (PEG-C18), and tri(ethylene glycol) (TEG), were explored as nanocarriers to entrap celastrol (CSL) via the injection-combined dialysis method. CSL nanoparticles were successfully prepared as orange milky solutions, which revealed a similar particle size of approximately 120 nm, with narrow distribution and a negative zeta potential of -20 mV. All these CSL nanoparticles exhibited good storage stability and media stability but presented different drug-loading capacities (DLCs), release profiles, cytotoxicity, and hemolytic activity. For DLCs, PEG-C18/CSL exhibited better CSL entrapment capacity. Regarding the release profiles, TEG/CSL showed the lowest release rate, PEG-C18/CSL presented a moderate release rate, and PEG/CSL exhibited a relatively fast release rate. Based on the different release rates, PEG-C18/CSL and TEG/CSL showed higher degrees of cytotoxicity than PEG/CSL. Furthermore, TEG/CSL showed the lowest membrane toxicity, and its hemolytic rate was below 20%. These results suggest that the structural effects of nanocarriers can affect the interactions between nanocarriers and drugs, resulting in different release profiles and antitumor activity.


Assuntos
Nanopartículas , Diálise Renal , Sistemas de Liberação de Medicamentos/métodos , Triterpenos Pentacíclicos , Polietilenoglicóis/química , Preparações Farmacêuticas , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
2.
J Nanobiotechnology ; 20(1): 137, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292036

RESUMO

BACKGROUND: Most intravenously administered drug-loaded nanoparticles are taken up by liver Kupffer cells, and only a small portion can accumulate at the tumor, resulting in an unsatisfactory therapeutic efficacy and side effects for chemotherapeutic agents. Tumor-targeted drug delivery proves to be the best way to solve this problem; however, the complex synthesis, or surface modification process, together with the astonishing high cost make its clinical translation nearly impossible. METHODS: Referring to Ouyang's work and over-threshold dosing theory in general, blank PEGylated liposomes (PEG-Lipo) were prepared and used as tumor delivery enhancers to determine whether they could significantly enhance the tumor accumulation and in vivo antitumor efficacy of co-injected liposomal ACGs (PEG-ACGs-Lipo), a naturally resourced chemotherapeutic. Here, the phospholipid dose was used as an indicator of the number of liposomes particles with similar particle sizes, and the liposomes was labelled with DiR, a near-red fluorescent probe, to trace their in vivo biodistribution. Two mouse models, 4T1-bearing and U87-bearing, were employed for in vivo examination. RESULTS: PEG-Lipo and PEG-ACGs-Lipo had similar diameters. At a low-threshold dose (12 mg/kg equivalent phospholipids), PEG-Lipo was mainly distributed in the liver rather than in the tumor, with the relative tumor targeting index (RTTI) being ~ 0.38 at 72 h after administration. When over-threshold was administered (50 mg/kg or 80 mg/kg of equivalent phospholipids), a much higher and quicker drug accumulation in tumors and a much lower drug accumulation in the liver were observed, with the RTTI increasing to ~ 0.9. The in vivo antitumor study in 4T1 tumor-bearing mice showed that, compared to PEG-ACGs-Lipo alone (2.25 mg/kg phospholipids), the co-injection of a large dose of blank PEG-Lipo (50 mg/kg of phospholipids) significantly reduced the tumor volume of the mice by 22.6% (P < 0.05) and enhanced the RTTI from 0.41 to 1.34. The intravenous injection of a low drug loading content (LDLC) of liposomal ACGs (the same dose of ACGs at 50 mg/kg of equivalent phospholipids) achieved a similar tumor inhibition rate (TIR) to that of co-injection. In the U87 MG tumor-bearing mouse model, co-injection of the enhancer also significantly promoted the TIR (83.32% vs. 66.80%, P < 0.05) and survival time of PEG-ACGs-Lipo. CONCLUSION: An over-threshold dosing strategy proved to be a simple and feasible way to enhance the tumor delivery and antitumor efficacy of nanomedicines and was benefited to benefit their clinical result, especially for liposomal drugs.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Lipossomos/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Distribuição Tecidual
3.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615265

RESUMO

Oligoethylene glycol dendron (G2) has been used in drug delivery due to its unique dendritic structure and excellent properties. In order to investigate the effects of lipophilic chains on drug delivery, the amphiphilic hybrid compound G2-C18 is synthesized, and celastrol (CSL) is selected to prepare "core-shell" structured CSL-G2-C18 nanoparticles (NPs) via the antisolvent precipitation method. Meanwhile, CSL-G2 NPs are prepared as the control. The two NPs show similar particle sizes and polydispersity indexes, while their morphologies exhibit dramatic differences. CSL-G2 NPs are solid spherical particles, while G2-C18 NPs are vesicles. The two NPs present ideal stability and similar release tendencies. The in vitro toxicity results show that the cell inhibition effect of CSL-loaded NPs is significantly enhanced when compared with free CSL, and the antitumor effect of CSL-G2-C18 NPs is stronger than that of CSL-G2 NPs. The IC50 value of CSL-G2 NPs and CSL-G2-C18 NPs is enhanced about 2.8-fold and 5-fold when compared with free CSL, respectively. The above results show that lipophilic chain-linking dendritic hybrid nanocarriers promote antitumor activity by affecting the morphology of NPs, which may aid in the selection of carrier designs.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
4.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164006

RESUMO

Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 µg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.


Assuntos
Antitussígenos , Expectorantes , Flavanonas/farmacologia , Animais , Antitussígenos/síntese química , Antitussígenos/química , Antitussígenos/farmacologia , Antitussígenos/uso terapêutico , Disponibilidade Biológica , Tosse/tratamento farmacológico , Tosse/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Expectorantes/síntese química , Expectorantes/química , Expectorantes/farmacologia , Expectorantes/uso terapêutico , Flavanonas/síntese química , Flavanonas/química , Flavanonas/uso terapêutico , Camundongos , Nanopartículas , Tamanho da Partícula , Solubilidade , Suspensões
5.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744861

RESUMO

Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized. The NRG (30 mg) and D-α-tocopherol polyethylene glycol succinate (10 mg) were wet-milled in deionized water (2 mL) with 10 g of zirconia beads via stirring at 50 °C for 2 h at a stirring speed of 300 rpm. As a result, the NRG NPs, with sheet-like morphology and a diameter of approximately 182.2 nm, were successfully prepared. The NRG NPs were stable in the gastrointestinal system and were released effectively after entering the blood circulation. In vivo experiments indicated that the NRG NPs have good antitussive effects. The cough inhibition rate after the administration of the NRG NPs was 66.7%, cough frequency was three times lower, and the potential period was 1.8 times longer than that in the blank model group. In addition, the enzyme biomarkers and histological analysis results revealed that the NRG NPs can effectively regulate the inflammatory and oxidative stress response. In conclusion, the NRG NPs exhibited good oral bioavailability and promoted antitussive and anti-inflammatory effects.


Assuntos
Antitussígenos , Flavanonas , Nanopartículas , Antitussígenos/farmacologia , Antitussígenos/uso terapêutico , Tosse/tratamento farmacológico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Tamanho da Partícula , Solubilidade , Água
6.
Nanotechnology ; 32(30)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862617

RESUMO

To improve the therapeutic efficacy of anticancer agents and extend their application, mussel-inspired chemical modifications have attracted considerable attention. Surface modification based on polydopamine (PDA) has been a facile and versatile method to immobilize biomolecules on substrates for targeted drug delivery. To better analyze pharmaceutical differences between PDA-based surface modification and traditional synthesis methods, we prepared two kinds of folate (FA)-targeted nanoparticles (NPs) loaded with paclitaxel (PTX). The resultant PTX-PDA-FA NPs and PTX-FA NPs represented PDA and synthesis strategies, respectively. PTX-PDA-FA NPs and PTX-FA NPs have been characterized. The particle size of PTX-PDA-FA NPs was smaller than that of PTX-FA NPs. The two kinds of NPs both exhibited long-rod morphology, good colloidal stability and sustained slow drug release. Cytotoxicityin vitrowas evaluated, and antitumor efficacy was investigated against 4T1 tumor-bearing mice. The tumor targeting therapeutic index of PTX-PDA-FA NPs and PTX-FA NPs showed equivalent superior specificity compared to nontargeted groups, which indicated that FA successfully attached to the surface of NPs by the PDA method and that the antitumor effect was equivalent to that of FA-modified NPs prepared by the chemical synthesis method. These results further indicated that PDA, as a simple and effective chemical surface modification platform, could be developed and applied in targeted delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Indóis/química , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Ácido Fólico/química , Camundongos , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Tamanho da Partícula , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nanotechnology ; 32(32)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33946061

RESUMO

Pterostilbene (PTE) is known as resveratrol of the next generation and it has attracted extensive attention in recent years. PTE can inhibit the growth of a variety of tumor cells. To overcome the problem of insolubility, PTE was loaded into nanoparticles (NPs) by anti-solvent precipitation technique using soybean lecithin (SPC) and D-α-tocopheryl polyethylene glycol succinate (TPGS) as stabilizers. The obtained PTE-NPs had an average particle size of 71.0 nm, a polydispersity index (PDI) value of 0.258, and a high zeta potential of -40.8 mV. PTE-NPs can maintain particle size stability in various physiological media. The entrapment efficiency of PTE-NPs was 98.24%. And the apparently water solubility of PTE-NPs was about 53 times higher than the solubility of PTE (54.41µg ml-1v-1s-1. 2.89 mg ml-1). M-1T-1T-1assay showed that the antitumor activity of PTE-NPs on 4T1 breast cancer cells, MCF-7 breast cancer cells and Hela cervical cancer cells was significantly increased by 4, 6 and 8 times than that of free PTE, respectively.In vivostudies have shown that PTE-NPs has a certain dose dependence. When injected intraperitoneally, PTE-NPs showed a similar therapeutic effect as paclitaxel injection (TIR was 57.53% versus 57.23%) against 4T1 tumor-bearing mice. This should be due to the improved bioavailability of the drug caused by nano-drug delivery system (nano-DDS). These results indicate that PTE-NPs may be a clinically promising anti-tumor drug for breast cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Paclitaxel/farmacologia , Estilbenos/farmacologia , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Neoplasias da Mama/patologia , Composição de Medicamentos/métodos , Feminino , Células HeLa , Humanos , Lecitinas/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Paclitaxel/farmacocinética , Tamanho da Partícula , Solubilidade , Estilbenos/farmacocinética , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Vitamina E/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Pharm ; 17(4): 1205-1214, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073273

RESUMO

The composition of amphiphilic nanocarriers can affect the antitumor efficacy of drug-loaded nanoparticles and should be researched systematically. In this paper, to study the influence of hydrophobic chains, an amphiphilic copolymer (PEG45PCL17) and hydrophilic PEG (PEG45) were utilized as nanocarriers to prepare docetaxel-loaded nanoparticles (DTX/PEG45PCL17 nanoparticles and DTX/PEG45 nanoparticles) through an antisolvent precipitation method. The two DTX nanoparticles presented a similar drug loading content of approximately 60% and a sheet-like morphology. During the preparation procedure, the drug loading content affected the morphology of DTX nanoparticles, and the nanocarrier composition influenced the particle size. Compared with DTX/PEG45 nanoparticles, DTX/PEG45PCL17 nanoparticles showed a smaller mean diameter and better in vitro and in vivo antitumor activity. The cytotoxicity of DTX/PEG45PCL17 nanoparticles against 4T1 cells was 1.31 µg mL-1, 3.4-fold lower than that of DTX/PEG45 nanoparticles. More importantly, DTX/PEG45PCL17 nanoparticles showed significantly higher antitumor activity in vivo, with an inhibition rate over 80%, 1.5-fold higher than that of DTX/PEG45 nanoparticles. Based on these results, antitumor activity appears to be significantly affected by the particle size, which was determined by the composition of the nanocarrier. In summary, to improve antitumor efficacy, the amphiphilic structure should be considered and optimized in the design of nanocarriers.


Assuntos
Antineoplásicos/química , Docetaxel/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química
9.
Nanotechnology ; 30(25): 255101, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30736019

RESUMO

In order to achieve the purpose of targeting treatment of osteosarcoma, we developed novel paclitaxel (PTX) nanoparticles (Nps) coated with polydopamine (PDA) and grafted by alendronate (ALN) as ligand. Dopamine can be easily polymerized on various surfaces to form a thin PDA film in alkaline environment, which provided a versatile platform to perform secondary reactions for compounds without functional groups. The targeting Nps had a mean particle size of 290.6 ± 2.2 nm and a zeta potential of -13.4 ± 2.7. It was stable in phosphate buffer saline (PBS, pH 7.4), 5% glucose, plasma and displayed sustained drug release behavior. In vitro assay demonstrated the targeting Nps had stronger cytotoxicity against K7M2 wt osteosarcoma cells than the non-targeting Nps. Furthermore, in vivo distribution study indicated they could accumulate much more in tumor than non-targeting Nps. This is consistent with the in vivo antitumor study, targeting Nps achieved a better therapeutic effect than Taxol (8 mg kg-1, i.v.) (71.85% versus 66.53%) and prominently decreased the side effects of PTX. In general, the PTX-PDA-ALN-Nps may offer a feasible and effective strategy for osteosarcoma targeted therapy.


Assuntos
Antineoplásicos/química , Indóis/química , Nanopartículas/química , Osteossarcoma/metabolismo , Paclitaxel/química , Polímeros/química , Albuminas/química , Alendronato , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Propriedades de Superfície , Distribuição Tecidual
10.
Bioconjug Chem ; 29(4): 1302-1311, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29426226

RESUMO

It was reported that the shape of nanocarriers played an important role in achieving a better therapeutic effect. To optimize the morphology and enhance the antitumor efficacy, in this study based on the amphiphilic PAMAM- b-OEG codendrimer (POD), docetaxel-loaded spherical and flake-like nanoparticles (DTX nanospheres and nanosheets) were prepared via an antisolvent precipitation method with similar particle size, surface charge, stability, and release profiles. The feed weight ratio of DTX/POD and the branched structure of OEG dendron were suggested to influence the shapes of the self-assembled nanostructures. As expected, DTX nanospheres and nanosheets exhibited strong shape-dependent cellular internalization efficiency and antitumor activity. The clathrin-mediated endocytosis and macropincytosis-dependent endocytosis were proven to be the main uptake mechanism for DTX nanospheres, while it was clathrin-mediated endocytosis for DTX nanosheets. More importantly, DTX nanosheets presented obviously superior antitumor efficacy over nanospheres, the tumor inhibition rate was increased 2-fold in vitro and 1.3-fold in vivo. An approximately 2-fold increase in pharmacokinetic parameter (AUC, MRT, and T1/2) and tumor accumulation were observed in the DTX nanosheets group. These results suggested that the particle shape played a key role in influencing cellular uptake behavior, pharmacokinetics, biodistribution, and antitumor activity; the shape of drug-loaded nanoparticles should be considered in the design of a new generation of nanoscale drug delivery systems for better therapeutic efficacy of anticancer drug.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/química , Docetaxel/administração & dosagem , Portadores de Fármacos/química , Etilenoglicol/química , Nanopartículas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Docetaxel/farmacocinética , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Feminino , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura
11.
Mol Pharm ; 15(7): 2665-2673, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782803

RESUMO

Nanoparticles based on hybrid block copolymers had been expected as effective nanocarriers for hydrophobic drug delivery. Herein, the novel dendritic-linear molecules from OEG dendron conjugated with octadecylamine (G2-C18) was designed, synthesized, and further applied as nanocarrier to prepare 10-hydroxycamptothecin (HCPT) nanoparticles via antisolvent precipitation method. It seemed that the feed weight ratio of HCPT vs G2-C18 not only affected the drug-loading content of nanoparticles but also influenced the morphology of HCPT nanoparticles; the morphology of HCPT nanoparticles was changed from nanosphere (NSs) to nanorod (NRs) with increasing the feed weight ratio. Both of HCPT nanoparticles presented good stability and similar drug release profiles, but different anticancer efficacy and cellular uptake mechanism. The cytotoxicity of HCPT NRs was enhanced significant comparing with HCPT NSs, the IC50 value was 2-fold lower than HCPT NSs ( p < 0.05). More importantly, HCPT NRs showed apparently higher antitumor activity in vivo, the inhibition rate of HCPT NRs was 1.3-fold higher than HCPT NSs. Based on these results, it suggested that the antitumor activity could be influenced significantly by particle morphology, which should be considered and optimized during the nanocarrier design.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Aminas/química , Animais , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/química , Nanotubos/química , Neoplasias/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Tensoativos/química , Resultado do Tratamento
12.
Bioconjug Chem ; 28(2): 390-399, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27982573

RESUMO

Nanorods based on dendrimers were explored as excellent candidates for nanoscale drug delivery system. In this study, fluorescently labeled PAMAM-b-oligoethylene glycols codendrimer (POC) was utilized as carrier to prepare 10-hydroxycamptothecin (HCPT) loaded nanorods (HCPT NRs) via antisolvent precipitation method augmented by ultrasonication with the optimized drug-loading content (∼90.6%) and positive charged surface. The nanorods presented high stability, and the release of HCPT nanorods showed a sustained release manner and was completed within 48 h. The nanorods presented higher cytotoxicity against HepG2 and 4T1 cells than HCPT injections, and the cellular uptake mechanism was proved to involve clathrin-mediated endocytosis and macropincytosis-dependent endobytosis. Importantly, the HCPT nanorods resulted in strong antitumor efficacy on the H22 liver tumor model, and no significant adverse effects was observed. Besides, in vivo studies also showed that HCPT NRs possessed better tumor accumulation over HCPT injection at the equivalent concentration. According to the high drug-loading content, enhanced antitumor efficacy, and appropriate particle size, HCPT NRs as the safe and efficient drug delivery systems could have potential application for cancer chemotherapy in clinic.


Assuntos
Camptotecina/análogos & derivados , Dendrímeros/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Nanotubos/química , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Camptotecina/química , Camptotecina/farmacologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Masculino , Camundongos , Solventes/química , Distribuição Tecidual
13.
Bioconjug Chem ; 25(1): 24-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24295126

RESUMO

The efficient synthesis of codendrimer PAMAM-co-OEG (PAG) and its properties in aqueous solution, including particle size and thermosensitivity, are described. PAG is synthesized with well-defined structure through the "attach to" route. In the aqueous solutions, PAG forms unimer and multimolecular aggregates with the respective particle sizes of approximately 8 and 200 nm, depending on the concentration. PAG shows thermosensitive behavior with sharp and fast transition, and the lower critical solution temperature is 38.2 °C. The suitability of codendrimer PAG as the thermosensitive carrier is evaluated with methotrexate (MTX) as the model drug. MTX is encapsulated in PAG with the drug-loading capacity of 39%, among which 30% of MTX is encapsulated in PAMAM core. The release behavior of MTX mediated by temperature is investigated with focus on the effects around the LCST of PAG.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Etilenos/química , Poliaminas/química , Temperatura , Animais , Dendrímeros/síntese química , Testes Hematológicos , Hemólise , Masculino , Micelas , Estrutura Molecular , Tamanho da Partícula , Coelhos , Propriedades de Superfície
14.
Int J Nanomedicine ; 19: 4533-4568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799699

RESUMO

Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment. Therefore, identifying their involvement and potential synergy in CIT approaches is decisive. Nano-based drug delivery systems (NDDSs) are ideal delivery systems because they can simultaneously target immune cells and cancer cells, promoting drug accumulation, and reducing the toxicity of the drug. In this review, we first introduce five current immunotherapies, including immune checkpoint blocking (ICB), adoptive cell transfer therapy (ACT), cancer vaccines, oncolytic virus therapy (OVT) and cytokine therapy. Subsequently, the immunomodulatory effects of chemotherapy by inducing immunogenic cell death (ICD), promoting tumor killer cell infiltration, down-regulating immunosuppressive cells, and inhibiting immune checkpoints have been described. Finally, the NDDSs-mediated collaborative drug delivery systems have been introduced in detail, and the development of NDDSs-mediated CIT nanoparticles has been prospected.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Nanopartículas/química , Vacinas Anticâncer/administração & dosagem , Terapia Viral Oncolítica/métodos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Terapia Combinada/métodos
15.
Biomed Pharmacother ; 177: 117107, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996708

RESUMO

The development of new effective drugs to treat breast cancer remains a huge challenge. ABT-737 can inhibit Bcl-2 proteins to promote apoptosis. Resiquimod (R848) is a TLR7/8 agonist that is effective in modulating the immunosuppressive microenvironment. In this study, a codelivery system (TPGS/ABT+R848 NPs) based on D-α-tocopheryl poly (ethylene glycol) 1000 succinate as a potential drug delivery vector to codelivery ABT-737 and R848 was investigated. The size of TPGS/ABT+R848 NPs was 102.5 nm, the drug loading of ABT-737 and R848 was 30.6 % and 12.5 %, and the entrapment efficiency was 84.2 % and 23.7 %, respectively. The nanoparticles showed no significant change in particle size over 14 days. R848 and ABT-737 were released in co-loaded nanoparticles in sequential order. In vitro anti-tumor experiments, the IC50 value of TPGS/ABT+R848 NPs was 0.30 µg·mL-1, 34 times lower than that of free ABT-737. Animal experiments also verified that TPGS/ABT+R848 NPs could enhance the anti-tumor activity, and the tumor weight inhibition rate was 75.3 %. This study demonstrated that TPGS NPs loaded with ABT-737 and R848 have superior combination tumor therapeutic effects, and the co-loaded preparation is conducive to anti-tumor efficacy. The TPGS/ABT+R848 NPs could be a promising platform against breast cancer.

16.
Int J Nanomedicine ; 19: 4679-4699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803997

RESUMO

Background: Breast cancer is a heterogeneous disease globally accounting for approximately 1 million new cases annually. Chemotherapy remains the main therapeutic option, but the antitumor efficacy needs to be improved. Methods: Two multifunctional nanoparticles were developed in this paper using oleic acid and mPEG2k-PCL2k as the drug carriers. Squamocin (Squ) was employed as a chemotherapeutic agent. Resiquimod (R848) or ginsenoside Rh2 was co-encapsulated in the nanoparticles to remold the immunosuppressive tumor microenvironment, and IR780 was coloaded as a photosensitizer to realize photothermal therapy. Results: The obtained Squ-R848-IR780 nanoparticles and Squ-Rh2-IR780 nanoparticles were uniformly spherical and approximately (162.200 ± 2.800) nm and (157.300 ± 1.1590) nm, respectively, in average diameter, with good encapsulation efficiency (above 85% for each drug), excellent stability in various physiological media and high photothermal conversion efficiency (24.10% and 22.58%, respectively). After intravenous administration, both nanoparticles quickly accumulated in the tumor and effectively enhanced the local temperature of the tumor to over 45 °C when irradiated by an 808 nm laser. At a low dose of 0.1 mg/kg, Squ nanoparticles treatment alone displayed a tumor inhibition rate of 55.28%, pulmonary metastasis inhibition rate of 59.47% and a mean survival time of 38 days, which were all higher than those of PTX injection (8 mg/kg) (43.64%, 25 days and 37.25%), indicating that Squ was a potent and effective antitumor agent. Both multifunctional nanoparticles, Squ-Rh2-IR780 nanoparticles and Squ-R848-IR780 nanoparticles, demonstrated even better therapeutic efficacy, with tumor inhibition rates of 90.02% and 97.28%, pulmonary metastasis inhibition rates of 95.42% and 98.09, and mean survival times of 46 days and 52 days, respectively. Conclusion: The multifunctional nanoparticles coloaded with squamocin, R848 and IR 780 achieved extraordinary therapeutic efficacy and excellent antimetastasis activity and are thus promising in the future treatment of breast tumors and probably other tumors.


Assuntos
Neoplasias da Mama , Indóis , Nanopartículas , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Animais , Nanopartículas/química , Humanos , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral , Camundongos , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia Fototérmica/métodos , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38421545

RESUMO

Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production. In order to tackle these problems, quercetin supersaturated drug delivery system (QSDDS) was successfully prepared using solvent method, for which PVP K30 was employed as a crystallization and precipitation inhibitor to maintain the supersaturated state of quercetin in aqueous system. The obtained QSDDS, with a relative high drug loading content of 13%, could quickly disperse in water and form colloidal system with the mean particle size of about 200 nm, meanwhile induce the generation of supersaturated quercetin solution more than 12 h. In vivo pharmacokinetic study proved that QSDDS achieved a high absolute bioavailability of 36.05%, 10 times as that of physical quercetin suspension, which was dose-dependent with higher bioavailability at higher dose. Considering the simple preparation method, QSDDS provided a feasible strategy and a simple way to improve oral absorption of insoluble flavonoids.

18.
Toxins (Basel) ; 15(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37755991

RESUMO

Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.


Assuntos
Ocratoxinas , Ocratoxinas/toxicidade , Agricultura , Alimentos , Mutagênese
19.
Pharmaceutics ; 15(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36839710

RESUMO

Mitochondria are involved in various stages of cancer cell diffusion and metastasis. Therefore, targeting tumor mitochondria with antineoplastic medicines to cause mitochondria to initiate apoptosis may be an effective strategy for cancer therapy. Here, in order to enhance the anti-tumor efficacy of the antineoplastic agent hydroxycamptothecin (HCPT), the mitochondrial targeting ligand 4-(carboxybutyl) triphenylphosphine bromide (TPP) was attached to HCPT by an ester linkage. The resultant TPP-HCPT (TH) conjugate could self-assemble into nano-aggregates, with a mean particle size of 203.2 nm and a polydispersity index (PDI) value of 0.312. The TH conjugate could also co-assembly with mPEG3000-PLGA5000 into nanoparticles (TH-NPs), with a mean diameter of 86.41 nm, a PDI value of 0.256 and a zeta potential of -0.125 mV. In contrast to HCPT injections, TH aggregates displayed enhanced cellular uptake, mitochondria-targetability and cytotoxicity against 4T1 cells, while TH-NPs showed even better improvement than TH aggregates. In the in vivo study, TH aggregates displayed higher anti-tumor efficacy in 4T1 tumor-bearing mice than HCPT injections (tumor inhibition rate, 55.71% vs. 69.17%), and TH-NPs displayed more superior anti-tumor effects (tumor inhibition rate, 80.02%). In conclusion, our research demonstrated that the TPP-HCPT conjugate and its nano-formulations, including TH aggregates and TH-NPs, may be a promising mitochondria-targeting anticancer medicine for cancer therapy. As far as we know, this is the first report in which TPP and HCPT have been conjugated directly for this aim.

20.
Pharmaceutics ; 15(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37242579

RESUMO

Neutral/negatively charged nanoparticles are beneficial to reduce plasma protein adsorption and prolong their blood circulation time, while positively charged nanoparticles easily transverse the blood vessel endothelium into a tumor and easily penetrate the depth of the tumor via transcytosis. Γ-Glutamyl transpeptidase (GGT) is overexpressed on the external surface of endothelial cells of tumor blood vessels and metabolically active tumor cells. Nanocarriers modified by molecules containing γ-glutamyl moieties (such as glutathione, G-SH) can maintain a neutral/negative charge in the blood, as well as can be easily hydrolyzed by the GGT enzymes to expose the cationic surface at the tumor site, thus achieving good tumor accumulation via charge reversal. In this study, DSPE-PEG2000-GSH (DPG) was synthesized and used as a stabilizer to generate paclitaxel (PTX) nanosuspensions for the treatment of Hela cervical cancer (GGT-positive). The obtained drug-delivery system (PTX-DPG nanoparticles) was 164.6 ± 3.1 nm in diameter with a zeta potential of -9.85 ± 1.03 mV and a high drug-loaded content of 41.45 ± 0.7%. PTX-DPG NPs maintained their negative surface charge in a low concentration of GGT enzyme (0.05 U/mL), whereas they showed a significant charge-reversal property in the high-concentration solution of GGT enzyme (10 U/mL). After intravenous administration, PTX-DPG NPs mainly accumulated more in the tumor than in the liver, achieved good tumor-targetability, and significantly improved anti-tumor efficacy (68.48% vs. 24.07%, tumor inhibition rate, p < 0.05 in contrast to free PTX). This kind of GGT-triggered charge-reversal nanoparticle is promising to be a novel anti-tumor agent for the effective treatment of such GGT-positive cancers as cervical cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa