Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 9(6): e0018224, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38738873

RESUMO

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.


Assuntos
Antibacterianos , Berberina , Colistina , Ácido Edético , Escherichia coli , Salmonella , Colistina/farmacologia , Berberina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Animais , Camundongos , Ácido Edético/farmacologia , Salmonella/efeitos dos fármacos , Salmonella/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas de Escherichia coli/genética , Simulação de Acoplamento Molecular , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada , Camundongos Endogâmicos BALB C , Sinergismo Farmacológico
2.
Microbiol Spectr ; 10(1): e0196321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170998

RESUMO

Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10-6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.


Assuntos
Bacitracina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Animais , Antibacterianos/farmacologia , China , Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Infecções Estreptocócicas , Streptococcus suis/isolamento & purificação , Suínos
3.
Microbiol Spectr ; 10(3): e0026522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35510850

RESUMO

Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes.


Assuntos
Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla , Ilhas Genômicas , Morganella morganii , Antibacterianos , Farmacorresistência Bacteriana Múltipla/genética , Genes MDR , Integrons/genética , Morganella morganii/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa