Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Sci ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136850

RESUMO

Emodin is an important anthraquinone compound with good anti-inflammatory activity in Chinese traditional medicine rhubarb. Detailed spatial distribution information in bio-tissues plays an important role in revealing the pharmacodynamics, toxicology and chemical mechanism of emodin. Herein, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI) analytical method was established to obtain information on the spatial and temporal changes of emodin in multiple mouse tissue sections (heart, liver, spleen, lung, kidney, and brain) after intraperitoneal injection of emodin in mice. The measurements were accomplished in the negative ion mode in the range of m/z 250-285 Da with a spatial resolution on 40 µm. It was found that emodin was predominantly distributed in the arteriolar vascular region of the heart, the capsule region of the spleen, and the cortex of the kidney. Moreover, the MALDI-TOF-MSI result implied that emodin might be distributed in the brain. These more detailed spatial distribution information provides the significant reference for investigating the action mechanism of emodin, which cannot be obtained from conventional LC-MS analysis. The distribution trend of emodin in the results of MALDI-TOF-MSI analysis agreed with the ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) results well, demonstrating the complementarity and reliability of the established MALDI-TOF-MSI method. Our work provided a label-free molecular imaging method to investigate the precise spatial distribution of emodin in various organs, which prove great potential in studying the effective substances and mechanism of rhubarb.

2.
Environ Int ; 190: 108781, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38880060

RESUMO

As an exogenous carbon input, microplastics (MPs), especially biodegradable MPs, may significantly disrupt soil microbial communities and soil element cycling (CNPS cycling), but few studies have focused on this. Here, we focused on assessing the effects of conventional low-density polyethylene (LDPE), biodegradable polybutylene adipate terephthalate (PBAT), and polylactic acid (PLA) MPs on rhizosphere microbial communities and CNPS cycling in a soil-soybean system. The results showed that PBAT-MPs and PLA-MPs were more detrimental to soybean growth than LDPE-MPs, resulting in a reduction in shoot nitrogen (14.05% and 11.84%) and shoot biomass (33.80% and 28.09%) at the podding stage. In addition, dissolved organic carbon (DOC) increased by 20.91% and 66.59%, while nitrate nitrogen (NO3--N) significantly decreased by 56.91% and 69.65% in soils treated with PBAT-MPs and PLA-MPs, respectively. PBAT-MPs and PLA-MPs mainly enhanced copiotrophic bacteria (Proteobacteria) and suppressed oligotrophic bacteria (Verrucomicrobiota, Gemmatimonadota, etc.), increasing the abundance of CNPS cycling-related functional genes. LDPE-MPs tended to enrich oligotrophic bacteria (Verrucomicrobiota, etc.) and decrease the abundance of CNPS cycling-related functional genes. Correlation analysis revealed that MPs with different degradation properties selectively affected the composition and function of the bacterial community, resulting in changes in the availability of soil nutrients (especially NO3--N). Redundancy analysis further indicated that NO3--N was the primary constraining factor for soybean growth. This study provides a new perspective for revealing the underlying ecological effects of MPs on soil-plant systems.

3.
J Am Soc Mass Spectrom ; 35(8): 1756-1767, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39001840

RESUMO

Cholesterol is a vital component of the central nervous system and tissues, and understanding its spatial distribution is crucial for biology, pathophysiology, and diagnostics. However, direct imaging of cholesterol using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) remains challenging and time-consuming due to the difficulty in ionizing the sterol molecule. To tackle this issue, a MALDI-MSI method is established for direct and rapid analysis of the spatial distribution of cholesterol in Alzheimer's disease (AD), different cancer tissues and organs via MALDI-MSI. This excellent imaging performance depends on the study and systemic optimization of various conditions that affect the imaging of MALDI-MSI. In this case, we report the distribution and levels of cholesterol across specific structures of the AD mouse brain and different tumor tissue and organs. According to the results, the content of cholesterol in the AD mouse cerebellum, especially in the arborvitae, was significantly higher than that in the wild type (WT) model. Furthermore, we successfully visualize the distribution of cholesterol in other organs, such as the heart, liver, spleen, kidney, pancreas, as well as tumor tissues parenchyma and interstitium using MALDI-MSI. Notably, the attribution of cholesterol MS/MS hydrocarbon fragments was systematically investigated. Our presented optimization strategy and established MALDI-MSI method can be easily generalized for different animal tissues or live samples, thereby facilitating the potential for applications of MALDI-MSI in clinical, medical and biological research.


Assuntos
Doença de Alzheimer , Colesterol , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Colesterol/análise , Colesterol/metabolismo , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/química , Camundongos Transgênicos , Modelos Animais de Doenças , Humanos
4.
J Affect Disord ; 346: 1-6, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923225

RESUMO

BACKGROUND: Geriatric depression increases the public health burden and health care costs, reduces quality of life. Studies have shown the association between ω-3 PUFAs levels and inflammatory markers levels and depression, but few have explored the relationship between omega-3 PUFAs, inflammatory markers, and cognitive function in geriatric depression. This study aimed to compare the differences in ω-3 PUFAs levels and inflammatory markers between geriatric depression with cognitive impairment (CI) and those without CI. METHODS: A total of three hundred and five elderly patients were recruited. In addition to collecting basic information, their blood specimens were collected to detect serum EPA, DHA, AA, TC, LDL-C, IL-6, TNF-α, and hs-CRP levels. The Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), and The Montreal cognitive assessment (MoCA) were used to assess their depression, anxiety, and cognitive function, respectively. RESULTS: Compared to those without CI, geriatric depression patients with CI had higher serum TC, LDL-C levels, lower EPA, DHA, and AA levels, and more elevated IL-6, TNF-α, and hs-CRP levels (all P < 0.05). Further linear regression analysis showed that EPA, DHA, and TNF-α, hs-CRP levels were significantly associated with the occurrence and the severity of CI. LIMITATIONS: No causal relationship could be drawn due to the cross-sectional design. CONCLUSIONS: Omega-3 PUFAs and inflammatory factors levels may predict CI in elderly patients with MDD in the future. Our findings suggest that ω-3 PUFAs (EPA and DHA) and inflammatory factors (TNF-α and CRP) may predict the occurrence and the severity of CI among elderly MDD patients.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Humanos , Idoso , Estudos Transversais , Proteína C-Reativa , Fator de Necrose Tumoral alfa , Interleucina-6 , LDL-Colesterol , Depressão , Qualidade de Vida , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos
5.
Sci Total Environ ; 933: 172933, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703855

RESUMO

Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.


Assuntos
Biodegradação Ambiental , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Plásticos Biodegradáveis , Solo/química , Brassica/microbiologia , Brassica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Polietileno , Plásticos
6.
Imeta ; 1(3): e31, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38868712

RESUMO

Orobanche cumana Wallr. is a holoparasite weed that extracts water and nutrients from its host the sunflower, thereby causing yield reductions and quality losses. However, the number of O. cumana parasites in the same farmland is distinctly different. The roots of some hosts have been heavily parasitized, while others have not been parasitized. What are the factors contributing to this phenomenon? Is it possible that sunflower interroot microorganisms are playing a regulatory role in this phenomenon? The role of the microbial community in this remains unclear. In this study, we investigated the rhizosphere soil microbiome for sunflowers with different degrees of O. cumana parasitism, that is, healthy, light infection, moderate infection, and severe infection on the sunflower roots. The microbial structures differed significantly according to the degree of parasitism, where Xanthomonadaceae was enriched in severe infections. Metagenomic analyses revealed that amino acid, carbohydrate, energy, and lipid metabolism were increased in the rhizosphere soils of severely infected sunflowers, which were attributed to the proliferation of Lysobacter. Lysobacter antibioticus (HX79) was isolated and its capacity to promote O. cumana seed germination and increase the germ tube length was confirmed by germination and pot experiments. Cyclo(Pro-Val), an active metabolite of strain HX79, was identified and metabolomic and molecular docking approaches confirmed it was responsible for promoting O. cumana seed germination and growth. And we found that Pseudomonas mandelii HX1 inhibited the growth of O. cumana in the host rhizosphere soil. Our findings clarify the role of rhizosphere microbiota in regulating the parasite O. cumana to possibly facilitate the development of a new weed suppression strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa