Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713743

RESUMO

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.

2.
BMC Biol ; 21(1): 165, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525156

RESUMO

BACKGROUND: The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS: We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS: Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Redes Reguladoras de Genes , Desoxirribonuclease I/genética
3.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540294

RESUMO

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Assuntos
Coloração Cromossômica , Oligonucleotídeos , Oligonucleotídeos/genética , Poaceae/genética , Triticum/genética , Cromossomos
4.
Plant Biotechnol J ; 20(9): 1670-1682, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35524459

RESUMO

PAM-relaxed Cas9 nucleases, cytosine base editors and adenine base editors are promising tools for precise genome editing in plants. However, their genome-wide off-target effects are largely unexplored. Here, we conduct whole-genome sequencing (WGS) analyses of transgenic plants edited by xCas9, Cas9-NGv1, Cas9-NG, SpRY, nCas9-NG-PmCDA1, nSpRY-PmCDA1 and nSpRY-ABE8e in rice. Our results reveal that Cas9 nuclease and base editors, when coupled with the same guide RNA (gRNA), prefer distinct gRNA-dependent off-target sites. De novo generated gRNAs by SpRY editors lead to additional, but insubstantial, off-target mutations. Strikingly, ABE8e results in ~500 genome-wide A-to-G off-target mutations at TA motif sites per transgenic plant. ABE8e's preference for the TA motif is also observed at the target sites. Finally, we investigate the timeline and mechanism of somaclonal variation due to tissue culture, which chiefly contributes to the background mutations. This study provides a comprehensive understanding on the scale and mechanisms of off-target and background mutations occurring during PAM-relaxed genome editing in plants.


Assuntos
Sistemas CRISPR-Cas , Oryza , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Edição de Genes/métodos , Estudo de Associação Genômica Ampla , Oryza/genética , Plantas Geneticamente Modificadas/genética , RNA Guia de Cinetoplastídeos/genética
5.
Plant Biotechnol J ; 20(3): 499-510, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34669232

RESUMO

Cytosine base editors (CBEs) can install a predefined stop codon at the target site, representing a more predictable and neater method for creating genetic knockouts without altering the genome size. Due to the enhanced predictability of the editing outcomes, it is also more efficient to obtain homozygous mutants in the first generation. With the recent advancement of CBEs on improved editing activity, purify and specificity in plants and animals, base editing has become a more appealing technology for generating knockouts. However, there is a lack of design tools that can aid the adoption of CBEs for achieving such a purpose, especially in plants. Here, we developed a user-friendly design tool named CRISPR-BETS (base editing to stop), which helps with guide RNA (gRNA) design for introducing stop codons in the protein-coding genes of interest. We demonstrated in rice and tomato that CRISPR-BETS is easy-to-use, and its generated gRNAs are highly specific and efficient for generating stop codons and obtaining homozygous knockout lines. While we tailored the tool for the plant research community, CRISPR-BETS can also serve non-plant species.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Códon de Terminação/genética , Citosina , Edição de Genes/métodos , Plantas/genética , RNA Guia de Cinetoplastídeos/genética
7.
Nat Plants ; 9(4): 588-604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024659

RESUMO

Promoter editing represents an innovative approach to introduce quantitative trait variation (QTV) in crops. However, an efficient promoter editing system for QTV needs to be established. Here we develop a CRISPR-Cas12a promoter editing (CAPE) system that combines a promoter key-region estimating model and an efficient CRISPR-Cas12a-based multiplexed or singular editing system. CAPE is benchmarked in rice to produce QTV continuums for grain starch content and size by targeting OsGBSS1 and OsGS3, respectively. We then apply CAPE for promoter editing of OsD18, a gene encoding GA3ox in the gibberellin biosynthesis pathway. The resulting lines carry a QTV continuum of semidwarfism without significantly compromising grain measures. Field trials demonstrated that the OsD18 promoter editing lines have the same yield performance and antilodging phenotype as the Green Revolution OsSD1 mutants in different genetic backgrounds. Hence, promoter editing of OsD18 generates a quantitative Green Revolution trait. Together, we demonstrate a CAPE-based promoter editing and tuning pipeline for efficient production of useful QTV continuum in crops.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Produtos Agrícolas/genética , Grão Comestível , Regiões Promotoras Genéticas
8.
Rice (N Y) ; 15(1): 35, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779161

RESUMO

DNA methylation is a conserved epigenetic modification which is vital for regulating gene expression and maintaining genome stability in both mammals and plants. Homozygous mutation of rice methyltransferase 1 (met1) gene can cause host death in rice, making it difficult to obtain plant material needed for hypomethylation research. To circumvent this challenge, the methylation inhibitor, 5-Aza-2'-deoxycytidine (AzaD), is used as a cytosine nucleoside analogue to reduce genome wide hypomethylation and is widely used in hypomethylation research. However, how AzaD affects plant methylation profiles at the genome scale is largely unknown. Here, we treated rice seedlings with AzaD and compared the AzaD treatment with osmet1-2 mutants, illustrating that there are similar CG hypomethylation and distribution throughout the whole genome. Along with global methylation loss class I transposable elements (TEs) which are farther from genes compared with class II TEs, were more significantly activated, and the RNA-directed DNA Methylation (RdDM) pathway was activated in specific genomic regions to compensate for severe CG loss. Overall, our results suggest that AzaD is an effective DNA methylation inhibitor that can influence genome wide methylation and cause a series of epigenetic variations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa