Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Lipídeos/química , Lipossomos/metabolismo , Lipossomos/química , Modelos Moleculares , Nanoestruturas/química
2.
Nat Mater ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951651

RESUMO

Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.

3.
BMC Genomics ; 25(1): 72, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233779

RESUMO

BACKGROUND: Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS: In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS: This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.


Assuntos
Braquiúros , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Braquiúros/genética , Temperatura , Natação
4.
Nat Mater ; 21(11): 1282-1289, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075966

RESUMO

Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic 'fine-structure gap' that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes.

5.
Environ Res ; 238(Pt 2): 117179, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748671

RESUMO

Marine benthic dinoflagellate toxins, potent bioactive compounds with wide-ranging presence in marine ecosystems, have surged in response to global climate change and human activities, prompting an urgent and imperative inquiry. This study conducts an in-depth review of contemporary research concerning these toxins, employing meticulous bibliometric analysis. Leveraging a dataset of 736 relevant literatures sourced from the Web of Science (spanning from 2000 to May 2023), our analysis delves comprehensively into the scientific discourse surrounding these toxic compounds. Employing tools such as VOSviewer, co-citation analysis, co-occurrence analysis, and cluster analysis, our study yields nuanced insights into the intricate characteristics and trajectories of the field. The co-citation analysis underscores the pivotal role played by benthic and epiphytic dinoflagellates like Ostreopsis and Gambierdiscus in shaping prevailing research trends. Our study identifies four distinct research directions, encompassing the domains of ecology, toxicology, toxin production, and taxonomy. Moreover, it traces the evolutionary journey of research stages, marking the transition from a focus on taxonomy to an emphasis on unraveling molecular mechanisms. The culmination of our comprehensive analysis yields three pertinent research recommendations: a call for widescale global studies, the advancement of rapid toxin monitoring techniques, and a deeper exploration of the factors influencing toxin synthesis and toxicity. These findings provide invaluable insights to researchers grappling with the complex realm of harmful algal blooms and substantially enrich the understanding of this pivotal and pressing field.


Assuntos
Dinoflagellida , Humanos , Dinoflagellida/fisiologia , Toxinas Marinhas , Ecossistema , Proliferação Nociva de Algas/fisiologia , Ecologia
6.
Rev Cardiovasc Med ; 22(1): 167-174, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33792258

RESUMO

Our objective was to systematically evaluate the efficacy and safety of proton pump inhibitors combined with clopidogrel in patients undergoing percutaneous coronary intervention and to provide an evidence basis for clinical treatment decision-making. The database EMBASE, PubMed/Medline, Web of Science, the Cochrane Library and CNKI records from establishment of each database until August 2020 were included. Articles were evaluated for quality. Meta-analysis of selected articles was conducted by RevMan5.3 software. Three RCTs and 4 cohort studies were included, with a total of 9932 patients. Four studies reported gastrointestinal (GI) bleeding events, 3 of which were RCT studies. Overall, there was a significantly lower risk of GI bleeding events in the PPI group compared to the no PPI group [OR = 3.06, 95% CI: 1.89 to 4.95] (P < 0.00001). In 3 RCT studies, there was also a significantly lower risk of GI bleeding events in the PPI group compared to the no PPI group [OR = 3.06, 95% CI: 1.80 to 5.21] (P < 0.0001). Seven studies including 3 RCTs and 4 cohort studies reported MACE. Overall, there was no significant difference in MACE events between PPI group and no PPI group [OR = 1.05, 95% CI: 0.91 to 1.21] (P = 0.50). Both in RCT and cohort studies subgroups, there also was no significant difference in MACE events between the PPI group and the no PPI group [OR = 1.16, 95% CI: 0.87 to 1.53] (P = 0.32), [OR = 1.02, 95% CI: 0.87 to 1.19] (P = 0.84), respectively. For PCI patients taking clopidogrel and PPI therapy, PPI reduced the risk of GI bleeding while having no impact on MACE.


Assuntos
Intervenção Coronária Percutânea , Inibidores da Bomba de Prótons , Clopidogrel/efeitos adversos , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Ticlopidina/efeitos adversos , Resultado do Tratamento
7.
J Am Chem Soc ; 142(25): 11270-11278, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479073

RESUMO

Triplet energy transfer from colloidal nanocrystals is a novel approach to sensitizing molecular triplets that are important for many applications. Recent studies suggest that this triplet transfer can be mediated by a hole transfer process when it is energetically allowed. In contrast, electron-transfer-mediated triplet transfer has not been observed yet, which is likely due to hole-trapping in typical II-VI group nanocrystals inhibiting the hole transfer step following initial electron transfer and hence disrupting a complete triplet exciton transfer. Here we report electron-transfer-mediated triplet energy transfer from CsPbCl3 and CsPbBr3 perovskite nanocrystals to surface-anchored rhodamine molecules. The mechanism was unambiguously established by ultrafast spectroscopy; control experiments using CdS nanocrystals also confirmed the role of hole-trapping in inhibiting this mechanism. The sensitized rhodamine triplets engaged in a variety of applications such as photon upconversion and singlet oxygen generation. Compared to conventional one-step triplet transfer, the electron-transfer-mediated mechanism is less demanding in terms of interfacial electronic coupling and hence is more generally implementable. Overall, this study not only establishes a complete framework of triplet energy transfer across nanocrystal/molecule interfaces but also greatly expands the scope of molecular triplet sensitization using nanocrystals.

8.
Angew Chem Int Ed Engl ; 59(40): 17726-17731, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32618078

RESUMO

Triplet energy transfer from inorganic nanocrystals to molecular acceptors has attracted strong attention for high-efficiency photon upconversion. Here we study this problem using CsPbBr3 and CdSe nanocrystals as triplet donors and carboxylated anthracene isomers as acceptors. We find that the position of the carboxyl anchoring group on the molecule dictates the donor-acceptor coupling to be either through-bond or through-space, while the relative strength of the two coupling pathways is controlled by the wavefunction leakage of nanocrystals that can be quantitatively tuned by nanocrystal sizes or shell thicknesses. By simultaneously engineering molecular geometry and nanocrystal wavefunction, energy transfer and photon upconversion efficiencies of a nanocrystal/molecule system can be improved by orders of magnitude.

9.
J Am Chem Soc ; 141(33): 13033-13037, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31393119

RESUMO

Triplet energy transfer (TET) from semiconductor nanocrystals (NCs) has recently emerged as a new triplet sensitization paradigm. It remains unclear how trap states pervasive in NCs influence TET or whether trapped excitons can undergo efficient TET. Here we partially address this issue by studying TET from CuInS2 NCs as a model system because their photogenerated excitons are known to be "self-trapped" due to hole localization to intragap Cu states. We found that, thanks to the long lifetime (209 ± 17 ns) of self-trapped excitons, they could be extracted with an efficiency of ∼92.3% by surface-anchored anthracene despite that the TET rate was relatively slow (57.1 ± 1.7 µs-1). We further leveraged this efficient sensitization to achieve triplet-triplet-annihilation photon upconversion (TTA-UC) with a quantum yield of 18.6 ± 0.3%. Thus, this study not only demonstrates trapped excitons can undergo efficient TET as well, but also presents the first TTA-UC system sensitized by nontoxic NCs which is important for the real-life application of this technique.

10.
J Am Chem Soc ; 141(10): 4186-4190, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30817139

RESUMO

The spectral properties of lead halide perovskite nanocrystals (NCs) can be engineered by tuning either their sizes via the quantum confinement effect or their compositions using anion and/or cation exchange. To date, the latter is more frequently adopted, primarily because of the ease of ion exchange for lead halide perovskites, making the quantum confinement effect seemingly redundant for perovskite NCs. Here we report that quantum confinement is required for triplet energy transfer (TET) from perovskite NCs to polycyclic aromatic hydrocarbons (PAHs). Static and transient spectroscopy measurements on CsPbBr3 NC-pyrene hybrids showed that efficient TET occurred only for small-sized, quantum-confined CsPbBr3 NCs. The influences of the size-dependent driving force and spectral overlap on the TET rate were found to be negligible. Instead, the TET rate scaled linearly with carrier probability density at the NC surface, consistent with a Dexter-type TET mechanism requiring wave function exchange between the NC donors and pyrene acceptors. Efficient TET funnels the excitation energy generated in strongly light-absorbing perovskite NCs into long-lived triplets in PAHs, which may find broad applications such as photon upconversion and photoredox catalysis.

11.
Dev Genes Evol ; 226(1): 1-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26635304

RESUMO

Fifteen SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were identified and characterized in Nicotiana tabacum L. cv. Qinyan95. The exon-intron structures of these genes were determined according to the coding sequences confirmed by RT-PCR and the genomic DNA sequences downloaded from the databases in Sol Genomics Network, and thirteen of them were found to carry the response element of miR156. To elucidate the origin of the validated NtabSPL genes, multiple alignments of the nucleotide sequences encompassing the open reading frames were conducted by using the orthologs in N. tabacum, Nicotiana sylvestris, Nicotiana tomentosiformis, and Nicotiana otophora. The results showed that six NtabSPL genes were derived from a progenitor of N. sylvestris, and nine NtabSPL genes were derived from a progenitor of N. tomentosiformis, further corroborating that N. tabacum came from the interspecific hybridization between the ancestors of N. sylvestris and N. tomentosiformis. In contrast to previous statements about highly repetitive sequences, the genome of N. tabacum mainly retained the paternal-derived SPL genes in diploidization process. Phylogenetic analyses based on the highly conserved SBP (SQUAMOSA PROMOTER BINDING PROTEIN) domains and the full-length amino acid sequences reveal that the SPL proteins of tobacco, tomato, and Arabidopsis can be categorized into eight groups. It is worth noting that N. tabacum contains seven NtabSPL6 genes originated from two parental genomes and NtabSPL6-2 possesses a GC-AG intron. In addition, transgenic tobacco plants harboring Arabidopsis Pri-miR156A were generated by Agrobacterium-mediated transformation method, and the constitutive expression of miR156 could obviously inhibit the activity of the NtabSPL genes containing its target site, suggesting the function of miR156 is conservative in tobacco and Arabidopsis.


Assuntos
Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Sequência de Bases , Evolução Molecular , Íntrons , Proteínas de Plantas/química , Alinhamento de Sequência , Nicotiana/classificação
12.
Anal Chem ; 86(8): 3924-30, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24654795

RESUMO

The development of a specific reaction of nanomaterials and reactive species is of fundamental importance for the determination of biomolecules. Here we report a novel nanoprobe for detection and imaging of ascorbic acid (AA) in living cells and in vivo based on the specific reaction of cobalt oxyhydroxide (CoOOH) and AA. Persistent luminescence nanoparticles (PLNPs) were used as the luminescence unit, and CoOOH nanoflakes served as the quencher. When CoOOH was modified on the surface of the PLNPs, the luminescence of the PLNPs was efficiently quenched by the CoOOH. In the presence of AA, CoOOH was reduced to Co(2+) and the luminescence of PLNPs was restored. The nanoprobe showed high selectivity and an instantaneous response. The luminescence property permits detection and imaging without external excitation, which could effectively avoid background noise and scattering of light from biological matrixes produced by in situ excitation. The current strategy provides an effective platform for monitoring and imaging reactive species in living cells and in vivo.


Assuntos
Ácido Ascórbico/química , Nanoestruturas/química , Animais , Linhagem Celular , Células/química , Cobalto , Transferência Ressonante de Energia de Fluorescência , Indicadores e Reagentes , Cinética , Luminescência , Macrófagos/química , Macrófagos/ultraestrutura , Camundongos , Óxidos
13.
Chemistry ; 20(50): 16488-91, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25352246

RESUMO

Persistent luminescence nanoparticles (PLNPs) hold great promise for the detection and imaging of biomolecules. Herein, we have demonstrated a novel nanoprobe, based on the manganese dioxide (MnO2 )-modified PLNPs, that can detect and image glutathione in living cells and in vivo. The persistent luminescence of the PLNPs can be efficiently quenched by the MnO2 nanosheets. In the presence of glutathione (GSH), MnO2 was reduced to Mn(2+) and the luminescence of PLNPs can be restored. The persistent luminescence property can allow detection and imaging without external excitation and avoid the background noise originating from the in situ excitation. This strategy can offer a promising platform for detection and imaging of reactive species in living cells or in vivo.


Assuntos
Glutationa/análise , Substâncias Luminescentes/química , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Animais , Linhagem Celular , Luminescência , Macrófagos/citologia , Camundongos , Nanopartículas/ultraestrutura , Imagem Óptica
14.
Sci Rep ; 14(1): 14368, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909046

RESUMO

As urban development accelerates and natural disasters occur more frequently, the urgency of developing effective emergency shelter planning strategies intensifies. The shelter location selection method under the traditional multi-criteria decision-making framework suffers from issues such as strong subjectivity and insufficient data support. Artificial intelligence offers a robust data-driven approach for site selection; however, many methods neglect the spatial relationships of site selection targets within geographical space. This paper introduces an emergency shelter site selection model that combines a variational graph autoencoder (VGAE) with a random forest (RF), namely VGAE-RF. In the constructed urban spatial topological graph, based on network geographic information, this model captures both the latent features of geographic unit coupling and integrates explicit and latent features to forecast the likelihood of emergency shelters in the construction area. This study takes Beijing, China, as the experimental area and evaluates the reliability of different model methods using a confusion matrix, Receiver Operating Characteristic (ROC) curve, and Imbalance Index of spatial distribution as evaluation indicators. The experimental results indicate that the proposed VGAE-RF model method, which considers spatial semantic associations, displays the best reliability.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38193341

RESUMO

Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues. PtE93 mRNA levels in Y-organ and epidermis fluctuated during the molt cycle, suggesting its involvement in juvenile molting. In vitro and in vivo treatments with 20E led to an induction of PtE93 expression in Y-organ and epidermis, while we found the opposite effect for methyl farnesoate (MF) treatments, a crustacean equivalent of insect JH. We also observed that two genes for ecdysteroid biosynthesis, Spook (Spo) and Shadow (Sad), were suppressed by 20E and induced by MF, showing a negative correlation between PtE93 and ecdysteroid biosynthesis. PtE93 RNA interference (RNAi) induced Spo and Sad expression levels, elevated ecdysteroid content in culture medium, and relieved the 20E inhibitory effect on ecdysteroid synthesis, indicating an inhibitory role of PtE93 on ecdysteroid synthesis. Overall, our results suggest that E93 may be involved in the crosstalk between 20E and MF during crustacean molting, and its presence in Y-organ is closely related to ecdysteroid synthesis.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecdisteroides , Ecdisterona/farmacologia , Hormônios Juvenis
16.
Heliyon ; 10(8): e29720, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681592

RESUMO

Objective: To explore the molecular mechanism of Aidi injection in the treatment of prostate cancer (PCa). Materials and methods: CCK-8 and colony formation assays were used to detect the effects of Aidi on PC3 and DU145 cells; effects on the cell cycle and apoptosis of DU145 cells were detected by flow cytometry; effects on migration and invasion of PC3 and DU145 cells were detected by wound healing and transwell assay, respectively. The main active components of Aidi, their corresponding targets, and PCa associated pathways were predicted and analyzed by network pharmacology. Then predicted key targets and related signaling pathways were further verified by western blotting. The potential active components of Aidi were predicted by molecular docking technology. Results: Aidi significantly inhibited the proliferation, colony formation, migration, and invasion of PC3 and DU145 cells; Aidi induced apoptosis and cell cycle G2/M phase arrest of DU145 cells. Network pharmacology analysis yielded 36 potential core targets of Aidi against PCa, and the top 10 signaling pathways including MAPK, PI3K-Akt, and HIF-1α and so on were enriched. Western blotting confirmed that Aidi upregulated the expression levels of p-JNK, p-p38, p-ERK, and ERK in DU145 cells. Molecular docking study showed that kaempferol, (Z)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one, 7-O-methylisomucronulatol, calycosin, and N-salicylidene-salicylamine can be well binding with JNK and p38. Conclusion: Aidi could inhibit PCa cell proliferation and metastasis through induction of apoptosis and cell cycle arrest, which may be related to activating JNK and p38 signaling pathway.

17.
Nat Nanotechnol ; 18(2): 124-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536044

RESUMO

Manipulation of solid-state spin coherence is an important paradigm for quantum information processing. Current systems either operate at very low temperatures or are difficult to scale up. Developing low-cost, scalable materials whose spins can be coherently manipulated at room temperature is thus highly attractive for a sustainable future of quantum information science. Here we report ambient-condition all-optical initialization, manipulation and readout of hole spins in an ensemble of solution-grown CsPbBr3 perovskite quantum dots with a single hole in each dot. The hole spins are initialized by sub-picosecond electron scavenging following circularly polarized femtosecond-pulse excitation. A transverse magnetic field induces spin precession, and a second off-resonance femtosecond-pulse coherently rotates hole spins via strong light-matter interaction. These operations accomplish near-complete quantum-state control, with a coherent rotation angle close to the π radian, of hole spins at room temperature.

18.
Nat Commun ; 14(1): 6071, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770519

RESUMO

Removal of introns from transfer RNA precursors (pre-tRNAs) occurs in all living organisms. This is a vital phase in the maturation and functionality of tRNA. Here we present a 3.2 Å-resolution cryo-EM structure of an active human tRNA splicing endonuclease complex bound to an intron-containing pre-tRNA. TSEN54, along with the unique regions of TSEN34 and TSEN2, cooperatively recognizes the mature body of pre-tRNA and guides the anticodon-intron stem to the correct position for splicing. We capture the moment when the endonucleases are poised for cleavage, illuminating the molecular mechanism for both 3' and 5' cleavage reactions. Two insertion loops from TSEN54 and TSEN2 cover the 3' and 5' splice sites, respectively, trapping the scissile phosphate in the center of the catalytic triad of residues. Our findings reveal the molecular mechanism for eukaryotic pre-tRNA recognition and cleavage, as well as the evolutionary relationship between archaeal and eukaryotic TSENs.


Assuntos
Precursores de RNA , Splicing de RNA , Humanos , Precursores de RNA/metabolismo , Íntrons/genética , RNA de Transferência/metabolismo , Sítios de Splice de RNA , Endonucleases/metabolismo , Conformação de Ácido Nucleico
19.
Heliyon ; 9(10): e21054, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886750

RESUMO

Background: Cancer is the most fatal disease in humans and the aberrant activity of various cell cycle proteins results in uncontrolled tumor cell proliferation, thus, regulating the cell cycle is an attractive target in cancer therapy. Objectives: Aurone is a naturally occurring active compound with a wide range of biological activities, of which 3, 4, 5-trimethoxyphenyl (TMP) is an important microtubule targeting pharmacophore. Based on the pharmacophore combination principle, we incorporate the TMP pharmacophore into the aurone structure and design a novel polymethoxy derivative that is expected to inhibit tumor cell proliferation through regulating the cell cycle. Methods: By introducing different substituents on C-4' and C-3', a series of new 4, 5, 6-trimethoxy aurone derivatives have been designed and synthesized. DU145, MCF-7 and H1299 cell lines were selected to evaluate their anticancer activity. The compound with the best cytotoxicity was then selected and the anticancer mechanisms were investigated by network pharmacology, flow cytometry, Western blot, and cell heat transfer assay. ADMET prediction evaluated the draggability of aurone derivatives. Results: Aurones 1b and 1c have selective anti-proliferative activity against DU145 cells. Among them, the compound 1c have better cytotoxicity against DU145. Compound 1c could bind the active cavity of CyclinB1/CDK1/CKS complex protein and induced G2/M phase arrest of DU145 cells by regulating the expression of CyclinB1 and p21. Compound 1c satisfies the Lipinski rule, is suitable for the absorption and metabolism index, and has a lower risk of cardiac toxicity. Conclusions: Polymethoxy aurones 1c might function as a CyclinB1/CDK1 inhibitor that deserved to be further developed for the treatment of prostate cancer.

20.
Adv Sci (Weinh) ; 10(33): e2300386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807821

RESUMO

The electronic structure of halide perovskites is central to their carrier dynamics, enabling the excellent optoelectronic performance. However, the experimentally resolved transient absorption spectra exhibit large discrepancies from the commonly computed electronic structure by density functional theory. Using pseudocubic CsPbI3 as a prototype example, here, it is unveiled with both ab initio molecular dynamics simulations and transmission electron microscopy that there exists pronounced dynamical lattice distortion in the form of disordered instantaneous octahedral tilting. Rigorous first-principles calculations reveal that the lattice distortion substantially alters the electronic band structure through renormalizing the band dispersions and the interband transition energies. Most notably, the electron and hole effective masses increase by 65% and 88%, respectively; the transition energy between the two highest valence bands decreases by about one half, agreeing remarkably well with supercontinuum transient-absorption measurements. This study further demonstrates how the resulting electronic structure modulates various aspects of the carrier dynamics such as carrier transport, hot-carrier relaxation, Auger recombination, and carrier multiplication in halide perovskites. The insights provide a pathway to engineer carrier transport and relaxation via lattice distortion, enabling the promise to achieve ultrahigh-efficiency photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa