Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Pestic Biochem Physiol ; 181: 105017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082040

RESUMO

Broflanilide is a novel insecticide with a unique mode of action on the insect GABA receptor and is registered worldwide for the control of agricultural pests. It shows high efficacy in controlling the fall armyworm (FAW) Spodoptera frugiperda, which is a destructive pest to various crops. FAW was exposed to sublethal concentrations of broflanilide to determine its impact on insect development. Sublethal doses (LD10 and LD30) caused failure of ecdysis, reduced body length of larvae, malformation of pupae, and vestigial wing formation in adults. Also, broflanilide at LD30 significantly reduced the amount of molting hormone (MH). After exposure to LD10 or LD30 broflanilide, expression of five Halloween genes, which participate in MH biosynthesis, were found to be altered. Specifically, the transcript levels of SfrCYP307A1 (Spook), SfrCYP314A1 (Shade) and SfrCYP315A1 (Shadow) in 3rd day larvae were significantly decreased as well as SfrCYP302A1 (Disembodied) and SfrCYP306A1 (Phantom) in 5th day pupae. In contrast, the transcript levels of SfrCYP302A1 in 3rd day larvae, SfrCYP307A1 and SfrCYP314A1 in 5th day pupae, and SfrCYP306A1, SfrCYP307A1 and SfrCYP315A1 in 0.5th day adults were significantly increased. Our results demonstrate that broflanilide caused the failure of ecdysis in FAW possibly by influencing the intake of cholesterol through inhibition of feeding and also via altering expression of genes important for MH biosynthesis.


Assuntos
Ecdisona , Muda , Animais , Benzamidas , Fluorocarbonos , Larva , Spodoptera/genética
2.
Pestic Biochem Physiol ; 179: 104973, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802523

RESUMO

The fall armyworm (FAW) Spodoptera frugiperda (Lepidoptera: Noctuidae) is a severe agricultural pest, which has invaded into China in 2019 and caused heavy damage to maize. The γ-aminobutyric acid receptor (GABAR)-targeted insecticides including broflanilide, fluralaner and fipronil exhibit high toxicity towards lepidopteran pests. However, whether they could be used for control of FAW and their possible mode of action in FAW remain unclear. In this study, broflanilide, fluralaner and fipronil exhibited high oral toxicity in FAW larvae with median lethal dose (LD50) values of 0.677, 0.711, and 23.577 mg kg-1 (active ingredient/ artificial food), respectively. In the electrophysiological assay, fluralaner and fipronil could strongly inhibit GABA-induced currents of homomeric FAW resistance to dieldrin 1 (RDL1) receptor with median inhibitory concentration (IC50) values of 5.018 nM (95% confidence interval (CI) 2.864-8.789) and 8.595 nM (95% CI 5.105-14.47), respectively, whereas broflanilide could not. In addition, the cytochrome P450 (P450), glutathione-S-transferase (GST) and carboxylesterase (CarE) activities were positively response to broflanilide, P450 and GST to fluralaner, and GST and CarE to fipronil, respectively, compared with those of control. In conclusion, we firstly reported a notable insecticidal activity of three representative GABAR-targeted insecticides to FAW in vivo, and in vitro using electrophysiological assay. The GST is the primary detoxification enzyme for three tested insecticides. Our results would guide the rotational use of GABAR-targeted insecticides in field.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Larva , Receptores de GABA , Spodoptera , Zea mays
3.
BMC Genomics ; 21(1): 120, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013879

RESUMO

BACKGROUND: Fluralaner is a novel isoxazoline insecticide with a unique action site on the γ-aminobutyric acid receptor (GABAR), shows excellent activity on agricultural pests including the common cutworm Spodoptera litura, and significantly influences the development and fecundity of S. litura at either lethal or sublethal doses. Herein, Illumina HiSeq Xten (IHX) platform was used to explore the transcriptome of S. litura and to identify genes responding to fluralaner exposure. RESULTS: A total of 16,572 genes, including 451 newly identified genes, were observed in the S. litura transcriptome and annotated according to the COG, GO, KEGG and NR databases. These genes included 156 detoxification enzyme genes [107 cytochrome P450 enzymes (P450s), 30 glutathione S-transferases (GSTs) and 19 carboxylesterases (CarEs)] and 24 insecticide-targeted genes [5 ionotropic GABARs, 1 glutamate-gated chloride channel (GluCl), 2 voltage-gated sodium channels (VGSCs), 13 nicotinic acetylcholine receptors (nAChRs), 2 acetylcholinesterases (AChEs) and 1 ryanodine receptor (RyR)]. There were 3275 and 2491 differentially expressed genes (DEGs) in S. litura treated with LC30 or LC50 concentrations of fluralaner, respectively. Among the DEGs, 20 related to detoxification [16 P450s, 1 GST and 3 CarEs] and 5 were growth-related genes (1 chitin and 4 juvenile hormone synthesis genes). For 26 randomly selected DEGs, real-time quantitative PCR (RT-qPCR) results showed that the relative expression levels of genes encoding several P450s, GSTs, heat shock protein (HSP) 68, vacuolar protein sorting-associated protein 13 (VPSAP13), sodium-coupled monocarboxylate transporter 1 (SCMT1), pupal cuticle protein (PCP), protein takeout (PT) and low density lipoprotein receptor adapter protein 1-B (LDLRAP1-B) were significantly up-regulated. Conversely, genes encoding esterase, sulfotransferase 1C4, proton-coupled folate transporter, chitinase 10, gelsolin-related protein of 125 kDa (GRP), fibroin heavy chain (FHC), fatty acid synthase and some P450s were significantly down-regulated in response to fluralaner. CONCLUSIONS: The transcriptome in this study provides more effective resources for the further study of S. litura whilst the DEGs identified sheds further light on the molecular response to fluralaner.


Assuntos
Isoxazóis/farmacologia , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Transcriptoma/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica/métodos , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Proteínas de Insetos/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Pupa/efeitos dos fármacos , RNA-Seq/métodos , Regulação para Cima/genética , Sequenciamento do Exoma/métodos
4.
Pestic Biochem Physiol ; 152: 8-16, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30497715

RESUMO

The increasing occurrence of resistance to chemical insecticides in insect pest populations is a serious threat to the integrity of current pest management strategies, and exploring new alternative chemistries is one important way to overcome this obstacle. Fluralaner, as a novel isoxazoline insecticide, has broad spectrum activity against a variety of insect pests, but little data is available about its effect on Lepidopterans. The effects of fluralaner on Spodoptera litura Fabricius, a widespread and polyphagous pest, were evaluated in the present study. Our results showed younger larvae were more susceptible to fluralaner treatment, but feeding and topical applications were similarly effective in 3rd instar larvae. Synergism assays indicated that piperonyl butoxide (PBO) could increase the toxicity of fluralaner to S. litura to a certain degree and P450 may be involved in the detoxification of fluralaner in vivo. Sublethal developmental effects included reduced larval body weight, decreased pupation and emergence, and notched wings in adults, accompanied by changes in the transcript levels of chitinase 5 (CHT5) and juvenile hormone acid methyltransferase (Jhamt), genes vital for insect development. Above results manifested that fluralaner is highly toxic to S. litura larvae via either topical or oral application and provide an indication of how this insecticide is metabolized in vivo. Further, our results provided a foundation for further development of fluralaner as a new tool in insect pest management.


Assuntos
Inseticidas/toxicidade , Isoxazóis/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Quitinases/genética , Sistema Enzimático do Citocromo P-450/genética , Glutationa Transferase/genética , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Metiltransferases/genética , Sinergistas de Praguicidas/toxicidade , Butóxido de Piperonila/toxicidade , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento
5.
Chem Soc Rev ; 44(8): 2108-21, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25711336

RESUMO

Graphene nanosheets arranged perpendicularly to the substrate surface, i.e., vertically-oriented graphenes (VGs), have many unique morphological and structural features that can lead to exciting properties. Plasma-enhanced chemical vapor deposition enables the growth of VGs on various substrates using gas, liquid, or solid precursors. Compared with conventional randomly-oriented graphenes, VGs' vertical orientation on the substrate, non-agglomerated morphology, controlled inter-sheet connectivity, as well as sharp and exposed edges make them very promising for a variety of applications. The focus of this tutorial review is on plasma-enabled simple yet efficient synthesis of VGs and their properties that lead to emerging energy and environmental applications, ranging from energy storage, energy conversion, sensing, to green corona discharges for pollution control.


Assuntos
Fontes Geradoras de Energia , Meio Ambiente , Grafite/química , Nanotecnologia/métodos , Humanos
6.
BMC Mol Biol ; 15: 28, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25515331

RESUMO

BACKGROUND: Transposable elements (TEs, transposons) are mobile genetic DNA sequences. TEs can insert copies of themselves into new genomic locations and they have the capacity to multiply. Therefore, TEs have been crucial in the shaping of hosts' current genomes. TEs can be utilized as genetic markers to study population genetic diversity. The rice stem borer Chilo suppressalis Walker is one of the most important insect pests of many subtropical and tropical paddy fields. This insect occurs in all the rice-growing areas in China. This research was carried out in order to find diversity between C. suppressalis field populations and detect the original settlement of C. suppressalis populations based on the piggyBac-like element (PLE). We also aim to provide insights into the evolution of PLEs in C. suppressalis and the phylogeography of C. suppressalis. RESULTS: Here we identify a new piggyBac-like element (PLE) in the rice stem borer Chilo suppressalis Walker, which is called CsuPLE1.1 (GenBank accession no. JX294476). CsuPLE1.1 is transcriptionally active. Additionally, the CsuPLE1.1 sequence varied slightly between field populations, with polymorphic indels (insertion/deletion) and hyper-variable regions including the identification of the 3' region outside the open reading frame (ORF). CsuPLE1.1 insertion frequency varied between field populations. Sequences variation was found between CsuPLE1 copies and varied within and among field populations. Twenty-one different insertion sites for CsuPLE1 copies were identified with at least two insertion loci found in all populations. CONCLUSIONS: Our results indicate that the initial invasion of CsuPLE1 into C. suppressalis occurred before C. suppressalis populations spread throughout China, and suggest that C. suppressalis populations have a common ancestor in China. Additionally, the lower reaches of the Yangtze River are probably the original settlement of C. suppressalis in China. Finally, the CsuPLE1 insertion site appears to be a candidate marker for phylogenetic research of C. suppressalis.


Assuntos
Elementos de DNA Transponíveis , Genes de Insetos , Mariposas/genética , Sequência de Aminoácidos , Distribuição Animal , Animais , Sequência de Bases , China , Evolução Molecular , Mutação INDEL , Dados de Sequência Molecular , Filogenia , Filogeografia , Polimorfismo Genético , Análise de Sequência de DNA , Transcrição Gênica
7.
Genome ; 57(2): 79-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24702065

RESUMO

The striped rice stem borer, Chilo suppressalis (Walker), is a major pest for rice production in China and the rest of Southeast Asia. Chemical control is the main means to alleviate losses due to this pest, which causes serious environmental pollution. An effective and environmentally friendly approach is needed for the management of the striped rice stem borer. Cysteine proteases in insects could be useful targets for pest management either through engineering plant protease inhibitors, targeting insect digestive cysteine proteases, or through RNA interference-based silencing of cysteine proteases, disrupting developmental regulation of insects. In this study, eight cysteine protease-like genes were identified and partially characterized. The genes CCO2 and CCL4 were exclusively expressed in the larval gut, and their expression was affected by the state of nutrition in the insect. The expression of CCL2, CCL3, and CCO1 was significantly affected by the type of host plant, suggesting a role in host plant - insect interactions. Our initial characterization of the striped rice stem borer cysteine protease-like genes provides a foundation for further research on this important group of genes in this major insect pest of rice.


Assuntos
Cisteína Proteases/genética , Controle de Insetos/métodos , Intestinos/enzimologia , Mariposas/genética , Animais , Sequência de Bases , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , Mariposas/enzimologia , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de RNA
8.
Arch Insect Biochem Physiol ; 87(4): 177-200, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25099623

RESUMO

The dark black chafer, Holotrichia parallela, is an economically important pest in China and worldwide. Traps based on chemical communication are being developed as an alternative control measure to pesticides for this pest, and studies to reveal chemical communication mechanisms in this pest are highly desirable. To systematically analyze genes potentially involved in chemical communication in this pest, we generated a comprehensive transcriptome with combined samples derived from multiple tissues and developmental stages. A total of 43,967 nonredundant sequences (unigenes) with average length of 806 bp were obtained. These unigenes were annotated into different pathways using gene ontology analysis and cluster analysis of orthologous groups of proteins, and kyoto encyclopedia of genes and genomes. In total, 25 transcripts encoding odorant-binding proteins (OBPs) and 16 transcripts encoding chemosensory proteins (CSPs) were identified based on homology searches. Tissue-specific expression profile indicates that OBP17 and CSP7 are likely responsible for male sex pheromone recognition, whereas OBP1-4, OBP9, OBP13-14, OBP17-18, OBP20, OBP22, OBP25, CSP1-7, CSP11, and CSP12-15 are likely responsible for chemical communication between the beetle and environments. Our data shall provide a foundation for further research on the molecular aspects of chemical communication of this insect, and for comparative genomic studies with other species.


Assuntos
Besouros/genética , Feromônios/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Transcriptoma , Sequência de Aminoácidos , Comunicação Animal , Animais , Sequência de Bases , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Receptores Odorantes/química
9.
Arch Insect Biochem Physiol ; 86(1): 58-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24764290

RESUMO

In S. exigua, ingestion of Cry1Ac reduces larval growth, shortens lifespan, and decreases copulation and oviposition of the adults. Cadherin-like protein SeCad1b in S. exigua has recently been published. Here, we tested whether SeCad1b mediates the negative effects of Cry1Ac. We identified three potential Cry toxin binding regions in SeCad1b, i.e., (879) EIAIQITDTNN(889) , (1357) SLLTVTI(1363) , and (1436) GVISLNFQ(1443) . We expressed and purified a truncated cadherin, rSeCad1bp, and its interspecific homologue, rHaBtRp, from H. armigera that contain the putative toxin binding regions. Using a toxin overlay assay, we found that rSeCad1bp specifically binds to biotinylated Cry1Ac in a dose-dependent manner. We also discovered that an addition of rSeCad1bp and rHaBtRp enhances the suppression of larval growth by Cry1Ac, although rSeCad1bp is less suppressive than rHaBtRp. Finally, RNA interference-mediated knockdown of SeCad1b reduced approximately 80% of the target gene and significantly alleviated the negative effect of CrylAc on larval growth. We infer that the S. exigua SeCad1b is a functional receptor of Cry1Ac.


Assuntos
Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Proteínas de Bactérias , Endotoxinas , Proteínas de Insetos , Larva , Mariposas/metabolismo , Ligação Proteica , RNA de Cadeia Dupla , Receptores de Superfície Celular
10.
Chirality ; 26(11): 683-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24811353

RESUMO

Nanoparticles are molecular-sized solids with at least one dimension measuring between 1-100 nm or 10-1000 nm depending on the individual discipline's perspective. They are aggregates of anywhere from a few hundreds to tens of thousands of atoms which render them larger than molecules but smaller than bulk solids. Consequently, they frequently exhibit physical and chemical properties somewhere between. On the other hand, nanocrystals are a special class of nanoparticles which have started gaining attention recently owing to their unique crystalline structures which provide a larger surface area and promising applications including chiral separations. Hybrid nanoparticles are supported by the growing interest of chemists, physicists, and biologists, who are researching to fully exploit them. These materials can be defined as molecular or nano-composites with mixed (organic or bio) and inorganic components, where at least one of the component domain has a dimension ranging from a few Å to several nanometers. Similarly, and due to their extraordinary physical, chemical, and electrical properties, single-walled carbon nanotubes have been the subject of intense research. In this short review, the focus is mainly on the current well-established simple preparation techniques of chiral organic and hybrid nanoparticles as well as single-walled carbon nanotubes and their applications in separation science. Of particular interest, cinchonidine, chitosan, and ß-CD-modified gold nanoparticles (GNPs) are discussed as model examples for organic and hybrid nanoparticles. Likewise, the chemical vapor deposition method, used in the preparation of single-walled carbon nanotubes, is discussed. The enantioseparation applications of these model nanomaterials is also presented.


Assuntos
Química Orgânica/métodos , Nanopartículas/química , Nanotubos de Carbono/química , Quitosana/química , Dicroísmo Circular , Ciclodextrinas/química , Ouro/química , Estereoisomerismo
11.
Appl Environ Microbiol ; 79(18): 5576-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835184

RESUMO

Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A remains unproven. In the present paper, we first cloned a cadherin-like gene, SeCad1b, from Spodoptera exigua (relatively susceptible to Cry1Ca). SeCad1b was highly expressed in the larval gut but scarcely detected in fat body, Malpighian tubules, and remaining carcass. Second, we bacterially expressed truncated cadherin rSeCad1bp and its interspecific homologue rHaBtRp from Helicoverpa armigera (more sensitive to Cry1Ac) containing the putative toxin-binding regions. Competitive binding assays showed that both Cry1Ca and Cry1Ac could bind to rSeCad1bp and rHaBtRp, and they did not compete with each other. Third, Cry1Ca ingestion killed larvae and decreased the weight of surviving larvae. Dietary introduction of SeCad1b double-stranded RNA (dsRNA) reduced approximately 80% of the target mRNA and partially alleviated the negative effect of Cry1Ca on larval survival and growth. Lastly, rSeCad1bp and rHaBtRp differentially enhanced the negative effects of Cry1Ca and Cry1Ac on the larval mortalities and growth of S. exigua and H. armigera. Thus, we provide the first lines of evidence to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca.


Assuntos
Proteínas de Bactérias/metabolismo , Caderinas/agonistas , Caderinas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Spodoptera/efeitos dos fármacos , Animais , Toxinas de Bacillus thuringiensis , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Ligação Proteica , Análise de Sequência de DNA , Especificidade por Substrato , Análise de Sobrevida
12.
Genome ; 56(6): 359-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23957676

RESUMO

Serpins, also called serine proteinase inhibitors, are widely distributed in eukaryotes. In insects, serpins play important roles in regulating immune responses, gut physiology, and other processes. Here, we report the cloning and characterization of 12 serpin-like cDNAs from the striped rice stem borer (Chilo suppressalis), a major rice pest. The putative proteins share significant sequence similarity with known insect serpins, especially those from lepidopterons. Analysis of functional domains revealed that nine of the cloned serpins are putative trypsin- or chymotrypsin-like inhibitors; two are mixed-type serpins that may act as inhibitors for trypsins, elastases, or thrombin; and the remaining one is truncate. The potential functions of these serpins in interacting with host plants were also investigated by analyzing tissue-specific expression and the impact of different host plant genotypes on gene expression. Our results provide a foundation for future studies on the role of serpins in gut physiology in the striped rice stem borer, and also useful information for comparative analyses of serpins from different insect species.


Assuntos
Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Serpinas/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Larva/genética , Dados de Sequência Molecular , Oryza/genética , Oryza/parasitologia , Filogenia , Estrutura Terciária de Proteína , Serpinas/química , Serpinas/metabolismo
13.
J Nanosci Nanotechnol ; 13(5): 3371-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858861

RESUMO

The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.


Assuntos
Cristalização/métodos , Resinas Epóxi/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases em Plasma/química , Dióxido de Silício/química , Condutividade Elétrica , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
J Am Chem Soc ; 134(13): 6018-24, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22409445

RESUMO

Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

15.
Genome ; 55(4): 281-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22432944

RESUMO

Serine proteinases including trypsins and chymotrypsins play various important roles in insects, including food digestion, immune defense, and zymogen activation. Studies on insect serine proteinases could reveal their feeding preference (polyphagous and monophagous) and facilitate identification of protease inhibitors, which can be engineered for pest management. In this paper, 11 transcripts encoding trypsin- and chymotrypsin-like proteins were cloned from the striped rice stem borer, Chilo suppressalis (Walker). All the predicted proteins share high sequence similarity with known trypsin- and chymotrypsin-like proteins from either lepidopterans or dipterans, and most of the proteins have conserved motifs that are characteristics of serine proteinases. Among the 11 cloned genes, six were expressed predominantly and one exclusively in the midgut of the insect, three were expressed relatively evenly in examined tissues, and one was not expressed in either the gut or hemolymph based on RT-PCR results. The seven genes that were predominantly or exclusively expressed in the gut were also affected by feeding on different host plants. The genes that were expressed in the gut and were affected by host plants are likely to encode digestive proteinases. The identification of trypsin- and chymotrypsin-like genes in this insect species is the first step towards further comparative studies and for identification of insect-specific proteinase inhibitors, which might be engineered to protect rice plants against the striped rice stem borer, which is one of the destructive pests of rice.


Assuntos
Quimotripsina/genética , Lepidópteros/genética , Tripsina/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Genome ; 55(7): 537-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22799437

RESUMO

The dark black chafer, Holotrichia parallela Motschulsky, is an economically important pest worldwide. Odorant-based lures and traps are being developed as a key kind of alternative control measures for this pest, and studies to reveal the mechanisms for chemotaxis in this pest are necessary. Two full-length cDNAs encoding different odorant-binding proteins (OBPs) were cloned. The predicted proteins were found to have the functional domains characteristic of typical OBPs and share a high degree of sequence similarity with OBP1 and OBP2 from other insects and were therefore designated as H. parallela OBP-1 and H. parallela OBP-2 (HparOBP-1 and HparOBP-2, respectively). These two OBPs were specifically expressed in antennae. The binding affinity of two purified proteins indicated that HparOBP-1 and HparOBP-2 could selectively interact with various volatiles emitted from host plants and pheromone components. Among the 10 chemicals tested, HparOBP-1 could bind to six of the tested compounds with a dissociation concentration (Ki) less than 20, and HparOBP-2 could bind to three of the compounds. The two OBPs are probably involved in chemotaxis of the dark black chafer. This discovery should accelerate research on chemical communications of this pest, which could potentially lead to the improvement of control measures based on lures and traps.


Assuntos
Besouros/genética , Proteínas de Insetos/química , Receptores Odorantes/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Besouros/metabolismo , DNA Complementar/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Feromônios , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Alinhamento de Sequência
17.
J Insect Sci ; 12: 41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22954331

RESUMO

The tobacco whitefly B-biotype Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a worldwide pest of many crops. In China, chlorpyrifos has been used to control this insect for many years and is still being used despite the fact that some resistance has been reported. To combat resistance and maintain good control efficiency of chlorpyrifos, it is essential to understand resistance mechanisms. A chlorpyrifos resistant tobacco whitefly strain (NJ-R) and a susceptible strain (NJ-S) were derived from a field-collected population in Nanjing, China, and the resistance mechanisms were investigated. More than 30-fold resistance was achieved after selected by chlorpyrifos for 13 generations in the laboratory. However, the resistance dropped significantly to about 18-fold in only 4 generations without selection pressure. Biochemical assays indicated that increased esterase activity was responsible for this resistance, while acetylcholine esterase, glutathione S-transferase, and microsomal-O-demethylase played little or no role. F392W mutations in acel were prevalent in NJ-S and NJ-R strains and 6 field-collected populations of both B and Q-biotype from locations that cover a wide geographical area of China. These findings provide important information about tobacco whitefly chlorpyrifos resistance mechanisms and guidance to combat resistance and optimize use patterns of chlorpyrifos and other organophosphate and carbamate insecticides.


Assuntos
Acetilcolinesterase/metabolismo , Clorpirifos/farmacologia , Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Acetilcolinesterase/genética , Animais , China , Feminino , Hemípteros/enzimologia , Hemípteros/genética , Hemípteros/metabolismo , Resistência a Inseticidas , Taxa de Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
18.
Pest Manag Sci ; 78(3): 1081-1089, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34786809

RESUMO

BACKGROUND: Broflanilide has been registered in China for the control of Lepidoptera and Coleoptera pests, and is widely used to control the target pests at lethal and sublethal levels. The lethal and sublethal effects of broflanilide on the common cutworm (CCW) Spodoptera litura Fabricius, a representative Lepidopteran pest in agricultural crops, were examined to explore its ecological influence on pests. RESULTS: In F0 , broflanilide had little influence on the hatchability of eggs, but significantly reduced the neonate survival rate. The lethal activity of broflanilide towards third-instar larvae and adults was 0.13 mg kg-1 (LD50 ) and 3.59 mg L-1 (LC50 ) respectively at 48 h. After being treated with a sublethal dose (LD10 and LD30 ) of broflanilide, the duration of third- to sixth-instar larvae and the mean fecundity of reproductive females were significantly increased, but pupation rate, weight of pupae and life-cycle rate were significantly decreased. In F1 , the duration of F1 larvae and the doubling time were prolonged, whereas the rates of pupation and the life cycle were decreased by 14.92% and 18.00%, respectively. The intrinsic rate of increase, finite rate of increase and net reproductive rate in the sublethal group were lower than in the control group. The relative fitness of F1 treated by LD10 and LD30 was 0.81 and 0.66, respectively. CONSLUSION: Broflanilide not only has highly lethal activity, but also suppresses the population growth and progeny of CCW, as a critical factor for guidelines of its usage in the field.


Assuntos
Inseticidas , Animais , Benzamidas , Diamida , Feminino , Fluorocarbonos , Humanos , Recém-Nascido , Inseticidas/farmacologia , Larva , Spodoptera
19.
Nanotechnology ; 22(29): 295712, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21693800

RESUMO

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Nanotubos de Carbono/química , Fator de Crescimento Transformador beta/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Nanotubos de Carbono/ultraestrutura , Proteínas Recombinantes/farmacologia , Silício/química , Molhabilidade/efeitos dos fármacos
20.
J Agric Food Chem ; 69(39): 11582-11591, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34555899

RESUMO

The ionotropic γ-aminobutyric acid (iGABA) receptor is commonly considered as a fast inhibitory channel and is an important insecticide target. Since 1990, RDL, LCCH3, and GRD have been successively isolated and found to be potential subunits of the insect iGABA receptor. More recently, one orphan gene named 8916 was found and considered to be another potential iGABA receptor subunit according to its amino acid sequence. However, little information about 8916 has been reported. Here, the 8916 subunit from Chilo suppressalis was studied to determine whether it can form part of a functional iGABA receptor by co-expressing this subunit with CsRDL1 or CsLCCH3 in the Xenopus oocyte system. Cs8916 or CsLCCH3 did not form functional ion channels when expressed alone. However, Cs8916 was able to form heteromeric ion channels when expressed with either CsLCCH3 or CsRDL1. The recombinant heteromeric Cs8916/LCCH3 channel was a cation-selective channel, which was sensitive to GABA or ß-alanine. The current of the Cs8916/LCCH3 channel was inhibited by dieldrin, endosulfan, fipronil, or ethiprole. In contrast, fluralaner, broflanilide, and avermectin showed little effect on the Cs8916/LCCH3 channel (IC50s > 10 000 nM). The Cs8916/RDL1 channel was sensitive to GABA, but was significantly different in EC50 and Imax for GABA to those of homomeric CsRDL1. Fluralaner, fipronil, or dieldrin showed antagonistic actions on Cs8916/RDL1. In conclusion, Cs8916 is a potential iGABA receptor subunit, which can interact with CsLCCH3 to generate a cation-selective channel that is sensitive to several insecticides. Also, as Cs8916/RDL1 has a higher EC50 than homomeric CsRDL1, Cs8916 may affect the physiological functions of CsRDL1 and therefore play a role in fine-tuning GABAergic signaling.


Assuntos
Inseticidas , Mariposas , Sequência de Aminoácidos , Animais , Inseticidas/farmacologia , Mariposas/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa