Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35385393

RESUMO

Three-dimensional point cloud classification is fundamental but still challenging in 3-D vision. Existing graph-based deep learning methods fail to learn both low-level extrinsic and high-level intrinsic features together. These two levels of features are critical to improving classification accuracy. To this end, we propose a dual-graph attention convolution network (DGACN). The idea of DGACN is to use two types of graph attention convolution operations with a feedback graph feature fusion mechanism. Specifically, we exploit graph geometric attention convolution to capture low-level extrinsic features in 3-D space. Furthermore, we apply graph embedding attention convolution to learn multiscale low-level extrinsic and high-level intrinsic fused graph features together. Moreover, the points belonging to different parts in real-world 3-D point cloud objects are distinguished, which results in more robust performance for 3-D point cloud classification tasks than other competitive methods, in practice. Our extensive experimental results show that the proposed network achieves state-of-the-art performance on both the synthetic ModelNet40 and real-world ScanObjectNN datasets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa