RESUMO
ConspectusMetal-organic frameworks (MOFs) represent a sophisticated blend of inorganic and organic components, promoting the development of coordination chemistry greatly and offering a versatile platform for tailored functionalities. By combining various metal nodes, organic linkers, and functional guests, MOFs provide numerous pathways for their design, synthesis, and customization. Among these, sequential linker installation (SLI) stands out as a novel and crucial strategy, enabling the precise integration of desired properties and functions at the atomic scale. SLI enhances structural diversity and stability while facilitating the meticulous construction of robust frameworks by leveraging open metal sites and functional organic linkers at targeted locations. Compared to the direct synthesis of MOFs, postsynthetic modification methods allow for precise regulation of their structures and corresponding properties. While unlike conventional postsynthetic modification methods, SLI requires the careful selection of linkers and framework design to ensure precise positioning for installation, which gives rise to the well-designed and ordered positions for the installed linkers, confirmed directly by X-ray diffraction technology.Recent advancements in MOF synthesis have led to the creation of increasingly tailored flexible matrix structures, particularly due to the diverse connection modes of multicore metal clusters, especially for the Zr6 cluster. The spatial hindrance of certain ligands has resulted in the formation of unsaturated metal clusters and various missing linker pockets. Examples of these advanced MOFs include PCN-606, PCN-608, PCN-609, PCN-700, and PCN-808, which feature specific open metal sites and certain framework flexibility conducive to SLI. Strategically positioned open metal sites within these frameworks serve as predetermined anchor points for desired functional molecules, while the frameworks' flexibility can accommodate molecules of varying sizes to a certain extent, enlarging the scopes of application greatly. This precise positioning of functional groups enables the creation of tailored sites for enhanced applications, such as adsorption, catalysis, and recognition.In this Account, we delve into the intricate process of designing and synthesizing MOFs with appropriate missing-linker pockets for the aforementioned applications. We discuss the meticulous selection of functional linkers and the methods used to insert them into the corresponding missing-linker pockets within the MOFs. Additionally, we explore the diverse properties and functionalities of the resulting MOFs, focusing on their adsorptive, catalytic, and recognition performance. Furthermore, we provide insights into the future trajectory of SLI methods, complemented by our recent works. This Account not only reviews the evolution of the SLI method but also underscores its practical applications across various functional domains, paving a rational pathway for the future development of advanced multifunctional MOFs through this method.
RESUMO
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Assuntos
Biomimética , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Catálise , Porosidade , Domínio CatalíticoRESUMO
Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.
RESUMO
Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.
RESUMO
Linker installation is a potent strategy for integrating specific properties and functionalities into metal-organic frameworks (MOFs). This method enhances the structural diversity of frameworks and enables the precise construction of robust structures, complementing the conventional postsynthetic modification approaches, by fully leveraging open metal sites and active organic linkers at targeting locations. Herein, we demonstrated an insertion of a d-camphorate linker into a flexible Zr-based MOF, PCN-700, through linker installation. The resultant homochiral MOF not only exhibits remarkable stability but also functions as a highly efficient luminescent material for enantioselective sensing. Competitive absorption and energy/electron transfer processes contribute to the sensing performance, while the difference in binding affinities dominates the enantioselectivity. This work presents a straightforward route to crafting stable homochiral MOFs for enantioselective sensing.
RESUMO
Hydrogen-bonded frameworks have garnered significant attention due to their flexible structures with tailored porosity, making them a promising class of porous framework materials. However, the direct synthesis of hydrogen-bonded frameworks with specific functions is highly challenging due to the unpredictable formation of hydrogen-bonded frameworks. In response, postsynthetic modification has emerged as a potent strategy to imbue desired functions into hydrogen-bonded frameworks. Recent advances have demonstrated the effectiveness of postsynthetic modification in hydrogen-bonded frameworks for studying their mechanical, luminescent, electrochemical, and chiral properties. In this concept, we comprehensively summarize the methodologies and outcomes of postsynthetic modification to hydrogen-bonded frameworks, providing a highlight of this exciting research area.
RESUMO
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
RESUMO
The synthesis of single-crystalline and robust pyrazolate metal-organic frameworks (Pz-MOFs) capable of facilitating challenging organic transformations is fundamentally significant in catalysis. Here we demonstrate a metal-node-based catalytic site anchoring strategy by synthesizing a single-crystalline and robust Pz-MOF (PCN-1004). PCN-1004 features one-dimensional (1D) copper-Pz chains interconnected by well-organized ligands, forming a porous three-dimensional (3D) network with two types of 1D open channels. Notably, PCN-1004 displays exceptional stability in aqueous solutions across a broad pH range (1 to 14), attributed to the robust copper-Pz coordination bonds. Significantly, PCN-1004 functions as an outstanding catalyst in cross dehydrogenative coupling reactions for constructing C-O/C-S bonds, even in the absence of directing groups, achieving yields of up to ~99%, with long cycle lives and high substrate compatibility. PCN-1004 outperforms all previously reported porphyrin-based homogeneous and heterogeneous catalysts. Control experiments and computations elucidate the pivotal catalytic role of the copper-Pz chains and reveal a free radical pathway for the reaction. This work not only demonstrates the successful implementation of a metal-node-based catalytic site anchoring strategy for the efficient catalysis of challenging organic transformations but also highlights the synergistic effect of a robust framework, 1D open channels, and active sites in enhancing catalytic efficiency within MOFs.
RESUMO
The rapid and accurate sensing of p-xylene, an essential raw material with a multi-billion-dollar market, in xylene mixture is of great significance in industry; however, the highly similar molecular structures, energy levels, and spectral characteristics of xylene isomers make the selective recognition extremely challenging. Metal-organic frameworks (MOFs) exhibiting tailorable pores and potential binding sites provide prospects for xylene sensing but a comprehensive understanding of the pore effect is still elusive, primarily due to the intricacies involved in the sensing process. Herein, we reported a robust bilanthanide MOF NKU-999-EuTb with precisely engineered pores to accommodate p-xylene, of which the binding sites were confirmed by single crystal X-ray diffraction and dynamic magnetic susceptibilities. NKU-999-EuTb exhibits high-performance in selective recognition for p-xylene towards its isomers. Through a systematical study, it was revealed that absorbing p-xylene into the pores governs the sensing performance. This work provides insights for developing advanced sensing materials for complex isomers.
RESUMO
Fast and selective Li+ transport in solid plays a key role for the development of high-performance solid-state electrolytes (SSEs) of lithium metal batteries. Porous compounds with tunable Li+ transport pathways are promising SSEs, but the comprehensive performances in terms of Li+ transport kinetics, electrochemical stability window, and interfacial compatibility are difficult to be achieved simultaneously. Herein, we report a porous coordination chain-based hydrogen-bonded framework (NKU-1000) containing arrayed electronegative sites for Li+ transport, exhibiting a superior Li+ conductivity of 1.13 × 10-3 S cm-1, a high Li+ transfer number of 0.87, and a wide electrochemical window of 5.0 V. The assembled solid-state battery with NKU-1000-based SSE shows a high discharge capacity with 94.4% retention after 500 cycles and can work over a wide temperature range without formation of lithium dendrites, which derives from the linear hopping sites that promote a uniformly high-rate Li+ flux and the flexible structure that can buffer the structural variation during Li+ transport.
RESUMO
Four benzeneboron-capped mononuclear CoII complexes with different alkyl substitutions on the fourth position of phenylboronic acid were obtained. The CoII ions are all wrapped by the pocket-like ligands and located in trigonal prismatic coordination geometries. Alternating-current magnetic susceptibility measurements reveal that they show different magnetization dynamics, such as distinct relaxation rates at the same temperature, the faster QTM rates for the ethyl and propyl substituted complexes, as well as different relaxation processes. Magneto-structural correlation study reveals that the various deviations of coordination geometry of CoII ion, diverse crystal packings and possible different vibration modes of substituents caused by modifying alkyl chains are the key factors affecting the magnetization dynamics. This work demonstrates that the alkyl chains even locating far away from the metal center can have a large impact on the magnetic behavior of the CoII complex with a very rigid coordination geometry, offering a new perspective towards transition metal based single-molecule magnets.
RESUMO
Enantioselective sensing is highly crucial and challenging due to the highly similar physical/chemical properties of enantiomers which may have different chemical impact on organism. Luminescent coordination compounds have attracted great attention as sensing materials based on their controllable chemical and electric structures that can be highly matched with the targeted species. To achieve high-performance enantioselective sensing, the direct synthesis of chiral and luminescent bifunctional coordination compounds is a rational way but highly challenging due to the price and synthesis difficulty. Herein, an anionic coordination-chain-based hydrogen-bonded framework was applied as a host to accommodate chiral and luminescent centers via a facile cation exchange reaction, affording a bifunctional framework that possesses enantioselective sensing properties for the mixture of enantiomers. This study paves a pathway for constructing multifunctional coordination chain-based hydrogen-bonded frameworks for rapidly enantioselective sensing function.
RESUMO
Artificial synthetic receptors toward functional biomolecules can serve as models to provide insights into understanding the high binding affinity of biological receptors to biomolecules for revealing their law of life activities. The exploration of serotonin receptors, which can guide drug design or count as diagnostic reagents for patients with carcinoid tumors, is of great value for clinical medicine but is highly challenging due to complex biological analysis. Herein, we report a cage-based metal-organic framework (NKU-67-Eu) as an artificial chemical receptor with well-matched energy levels for serotonin. The energy transfer back from the analyte to the framework enables NKU-67-Eu to recognize serotonin with excellent neurotransmitter selectivity in human plasma and an ultra-low limit of detection of 36 nM. Point-of-care visual detection is further realized by the colorimetry change of NKU-67-Eu toward serotonin with a smartphone camera.
Assuntos
Estruturas Metalorgânicas , Receptores Artificiais , Humanos , Estruturas Metalorgânicas/química , SerotoninaRESUMO
Two mononuclear DyIII single-molecule magnets with different ligand substituents located far from the coordinating atoms, [Dy(L-NO2)(NO3)] (1) and [Dy(L-Me)(NO3)] (2), and their diamagnetic-ion diluted analogues, 1' and 2', were structurally and magnetically characterized. 1 and 2 have nearly identical coordination environments of DyIII ions with D2d symmetry but different magnetization dynamics. No Orbach process was observed for 1 and 1' in the testing temperature and frequency range, but effective energy barriers of 575 and 829 K for 2 and 2' were obtained, respectively. The opened hysteresis loops were observed until 6 K for 1 and 10 K for 2. Ab initio calculations reveal that the energy gaps between ground and low-lying excited states of 2 are higher than those of 1 and the relaxation rate through quantum tunneling of magnetization of 2 is lower than that of 1 due to the electronic effect of the axial coordinating oxygen atoms influenced by ligand substitutions.
RESUMO
Water contamination is a highly critical issue owing to its strong relationship to human health. In addition to chemical pollutants, microorganisms such as multiresistant pathogenic bacteria have received significant attention from the World Health Organization. The main problem associated with monitoring pathogenic bacteria in water is the interference from concomitant species and their low concentrations. To address this problem, we synthesized a bilanthanide-organic material as an efficient luminescence sensor for the detection of Pseudomonas aeruginosa, a representative bacterium, via its two unique biomarkers: 1-hydroxyphenazine (1-HX) and 2-aminoacetophenone (2-AA). This multiplexed sensing approach overcomes a common issue encountered by single-marker luminescence sensors that may report false positives due to coexisting species in the complex environment. High sensitivities and low limits of detection for 1-HX and 2-AA were obtained with very fast response time. The key structural factors governing the high-performance sensing function were revealed. This work provides an alternative route for the effortless and instant detection of bacterial biomarkers in water.
Assuntos
Elementos da Série dos Lantanídeos , Bactérias , Biomarcadores , Humanos , Pseudomonas aeruginosa/química , ÁguaRESUMO
Basic requirements for advanced and practical supercapacitors need electrode materials with strong stability, high surface area, well-defined porosity, and enhanced capability of ion insertion and electron transfer. It is worth mentioning that the two-dimensional cluster-based Ni/Co-organic layer (Ni0.7Co0.3-CMOL) inherits high stability from the Kagóme lattice and shows excellent pseudocapacitance behavior. As an optimized atomic composition, this crystalline CMOL exhibits excellent performance and stability both in 1.0 M KOH and All-Solid-State Flexible Asymmetric Supercapacitor (ASCs). The specific capacitance values are 1211 and 394 F g-1 and the energy density is 54.67 Wh kg-1 at 1 A g-1. Good cycling stability is characterized by its capacitance retention, maintained at 92.4% after 5000 cycles in a three-electrode system and 90% after 2000 cycles at 20 A g-1 for assembled All-Solid-State Flexible ASCs. An in situ XRD technique was used in the three-electrode system, which showed that there was no signal of crystalline substance that affected the cyclic stability of the material while charging and discharging. These superior results prove that Ni0.7Co0.3-CMOL is a promising candidate for supercapacitor applications.
RESUMO
Porosity is a fundamental property of metal-organic frameworks (MOFs). However, the role of the pore size has always been underestimated in MOF-based luminescent sensors for enantioselective sensing. The construction of isoreticular MOFs (IRMOFs) with variable pore sizes and the synergy between chirality and luminescence is challenging. Herein, a general strategy was developed to introduce chirality into two well-known IRMOF-74 analogs with nanochannels of identical shapes but different pore sizes by functionalizing the open metal site under mild conditions. To enhance the detection accuracy, a second luminescent center was introduced into the IRMOF-74 system to achieve ratiometric sensing. The two bifunctionalized IRMOF-74 compounds exhibited pore-size-dependent sensing performance for enantiomers. This study not only provides a convenient method to construct chiral MOFs as advanced sensing materials but also reveals the fundamental of the pores in MOF-based luminescent sensors.
RESUMO
Air pollution by SO2 and NO2 has caused significant risks on the environment and human health. Understanding the mechanism of active sites within capture materials is of fundamental importance to the development of new clean-up technologies. Here we report the crystallographic observation of reversible coordinative binding of SO2 and NO2 on open NiII sites in a metal-organic framework (NKU-100) incorporating unprecedented {Ni12 }-wheels; each wheel exhibits six open NiII sites on desolvation. Immobilised gas molecules are further stabilised by cooperative host-guest interactions comprised of hydrogen bonds, πâ â â π interactions and dipole interactions. At 298â K and 1.0â bar, NKU-100 shows adsorption uptakes of 6.21 and 5.80â mmol g-1 for SO2 and NO2 , respectively. Dynamic breakthrough experiments have confirmed the selective retention of SO2 and NO2 at low concentrations under dry conditions. This work will inspire the future design of efficient sorbents for the capture of SO2 and NO2 .
RESUMO
Entacapone (ENT) is a powerful catechol-O-methyl transferase inhibitor that is used for the diagnosis and treatment of Parkinson's syndrome, but the amount used must be well controlled to avoid overtreatment and side effect. Fast and selective detection of ENT needs well-matched energy levels and well-designed sensor-ENT interaction which is highly challenging. In this work, a water stable europium-based metal-organic framework (Eu-TDA) was synthesized to detect ENT by luminescence with excellent reusability and selectivity in the presence of main coexisting and interference species of plasma with a limit of detection of 5.01â µM. The experimental results showed that the luminescence of Eu-TDA can be effectively quenched by ENT via well-designed photoinduced electron transfer mechanism and internal filtration effect mechanism in the system.
Assuntos
Elementos da Série dos Lantanídeos , Catecol O-Metiltransferase , Catecóis , Humanos , Nitrilas , SobretratamentoRESUMO
2-Aminoacetophenone (2-AA) is a metabolite produced in large quantities by the pathogenic bacteria Pseudomonas aeruginosa (PA), which is a biomarker for PA in water. State-of-the-art analytical techniques to detect PA usually require expensive instruments and a long analysis time which are not suitable for real-time water quality monitoring, especially for high-quality drinking water. Herein, we reported the application of a europium metal-organic framework (Eu-MOF) as a luminescent sensing material, which provides a facile, environmentally friendly and low-cost way for the fast detection of PA in water. Eu-MOF shows a high sensitivity toward 2-AA with a KSV value of 3.563 × 104 M-1, rapid luminescence response in 12 s and high-selectivity and anti-interference ability with the existence of common detection indexes in drinking water owing to the good match of the energy levels of Eu-MOF and 2-AA. A systematical optimization of the sensing conditions to enhance the sensing function of Eu-MOF for 2-AA was discussed in detail, to give fundamentals for the rational design of MOF-based sensing materials.